当前位置: 首页 > news >正文

做短视频网站需要审批网站服务器搭建与管理

做短视频网站需要审批,网站服务器搭建与管理,关于网页设计的论文范文,校园微网站建设方案ppt之前我们获取了一张图像的人脸信息,现在我们来使用特征点分析来匹配两张lyf照片的相似度 获取两张图片的人脸信息 import cv2 import face_recognition# 加载图像文件 img1 face_recognition.load_image_file(lyf1.png) img2 face_recognition.load_image_file(l…

之前我们获取了一张图像的人脸信息,现在我们来使用特征点分析来匹配两张lyf照片的相似度

获取两张图片的人脸信息

import cv2
import face_recognition# 加载图像文件
img1 = face_recognition.load_image_file('lyf1.png')
img2 = face_recognition.load_image_file('lyf2.png')
# 将图像从 BGR 格式转换为 RGB 格式
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 第一个人的人脸位置信息
faceloc1 = face_recognition.face_locations(img1)[0]
faceloc2 = face_recognition.face_locations(img2)[0]
#框出人脸
cv2.rectangle(img1, (faceloc1[3], faceloc1[0]), (faceloc1[1], faceloc1[2]), (0, 255, 0), 3)
cv2.rectangle(img2, (faceloc2[3], faceloc2[0]), (faceloc2[1], faceloc2[2]), (0, 255, 0), 3)#打印人脸位置信息
print(faceloc1)
print(faceloc2)cv2.imshow('lyf1', img1)
cv2.imshow('lyf2', img2)
cv2.waitKey(0)

效果如下

然后接下来我们使用face_encodings来进行提取人脸特征编码,首先我们先对这个函数进行一下介绍

face_encodings函数

face_recognition.face_encodings() 是 face_recognition 库中的一个函数,用于从图像中提取人脸的特征编码。这些编码是对人脸图像的数值化描述,可以用来比较不同人脸之间的相似度,从而进行人脸识别或验证。

face_encodings(face_image, known_face_locations=None, num_jitters=1)

  • face_image: 必须是一个RGB图像(numpy数组),即使是从OpenCV加载的图像也需要先转换为RGB格式。

  • known_face_locations: 可选参数,指定人脸位置的列表。每个位置是一个包含四个整数的元组 (top, right, bottom, left),代表人脸框的坐标。如果不提供此参数,函数将自动检测图像中的所有人脸。

  • num_jitters: 可选参数,默认为1。用于增加对每个人脸提取特征时的采样次数,以获得更稳定的编码。较大的值可能会提高准确性,但会增加计算成本。

  • 返回值:

    该函数返回一个包含每个检测到的人脸编码的列表。每个编码是一个128维的numpy数组,描述了人脸在128维空间中的位置关系和特征。

face_recognition.face_encodings() 可以结合 face_recognition.face_locations() 使用,以便首先检测人脸位置,然后提取这些位置上的人脸编码。

人脸编码是一个具有良好特性的向量,可以用于比较两张人脸图像的相似度。通常,人脸编码越相似,它们之间的距离(如欧氏距离)越小。

该函数在进行人脸识别、人脸验证和人脸聚类等任务时非常有用。

这样我们使用faceloc1 = face_recognition.face_locations(img1)[0]

face_encoding1 = face_recognition.face_encodings(img1, [faceloc1])[0]

这里就表示获取第一个人脸的特征编码

img1 = face_recognition.load_image_file('lyf1.png')
img2 = face_recognition.load_image_file('lyf2.png')
# 将图像从 BGR 格式转换为 RGB 格式
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 第一个人的人脸位置信息
faceloc1 = face_recognition.face_locations(img1)[0]
faceloc2 = face_recognition.face_locations(img2)[0]
# 提取人脸编码
face_encoding1 = face_recognition.face_encodings(img1, [faceloc1])[0]
face_encoding2 = face_recognition.face_encodings(img2, [faceloc2])[0]

下面我们使用compare_faces来对比两个图片人脸的相似度,介绍一下这个函数

compare_faces函数

face_recognition.compare_faces([face_encoding1], face_encoding2) 是一个用于人脸比对的函数,通常用于人脸识别任务中。这个函数接受两个参数:

  • face_encoding1: 表示第一个人脸的编码,通常是一个128维的向量,用于表示人脸的特征。
  • face_encoding2: 表示第二个人脸的编码,同样是一个128维的向量。

函数的作用是比较这两个人脸编码,判断它们是否来自同一个人脸。具体来说,它会计算这两个人脸编码之间的欧氏距离(Euclidean distance),如果距离小于一个阈值(一般来说是0.6),就认为这两个人脸是同一个人,返回True;否则返回False。

import cv2
import face_recognition# 加载图像文件
img1 = face_recognition.load_image_file('lyf1.png')
img2 = face_recognition.load_image_file('lyf2.png')
# 将图像从 BGR 格式转换为 RGB 格式
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
# 第一个人的人脸位置信息
faceloc1 = face_recognition.face_locations(img1)[0]
faceloc2 = face_recognition.face_locations(img2)[0]
# 提取人脸编码
face_encoding1 = face_recognition.face_encodings(img1, [faceloc1])[0]
face_encoding2 = face_recognition.face_encodings(img2, [faceloc2])[0]
#框出人脸
cv2.rectangle(img1, (faceloc1[3], faceloc1[0]), (faceloc1[1], faceloc1[2]), (0, 255, 0), 3)
cv2.rectangle(img2, (faceloc2[3], faceloc2[0]), (faceloc2[1], faceloc2[2]), (0, 255, 0), 3)
#比对人脸特征
res = face_recognition.compare_faces([face_encoding1],face_encoding2)
print(res)
#打印人脸位置信息
# print(faceloc1)
# print(faceloc2)cv2.imshow('lyf1', img1)
cv2.imshow('lyf2', img2)
cv2.waitKey(0)

效果如下

这里可以看见,打印了True,说明为同一个人

到这里就完成了对两个人脸的比对,感兴趣的可以关注一下,谢谢

http://www.15wanjia.com/news/9306.html

相关文章:

  • 做网站公司青岛注册网站在哪里注册
  • 网站开发系统测试百度推广基木鱼
  • 诸暨网站建设网络营销最新案例
  • 个人备案网站做淘宝客关键词排名点击软件推荐
  • 建设项目查询百度seo在哪里
  • 品牌网站建设e小蝌蚪山西seo排名
  • 个人网站建立教程网站收录优化
  • 重庆网站建设yunhuit搭建网站教程
  • 天津网站建设网页设计公司360站长平台
  • wordpress 摘要字数限制官网seo哪家公司好
  • 网站建设实施方案网址提交入口
  • 北京东城网站建设公司网站制作软件免费下载
  • 租香港服务器做网站vi设计公司
  • 网站上线流程 配合人员爱站网络挖掘词
  • 如何制作简易网站seo公司重庆
  • 苏州餐饮 网站建设营销自动化
  • 别人带做的网站关闭了权限咋办站长工具关键词排名怎么查
  • 一般网站建设多少钱整站优化和单词
  • 云主机怎么做网站seo优化工作内容做什么
  • 简单网页徐州seo企业
  • 人事怎么做招聘网站比对分析seo网站优化培训怎么样
  • 企业网站文章百度网盘在线登录
  • 音乐网站建设流程郑州seo
  • 杭州营销网站建设公司长尾关键词爱站网
  • 如何显示隐藏的图片wordpress西安seo外包行者seo
  • 山西手动网站建设推广我有广告位怎么找客户
  • 天津市网站制作 公司怎么在百度上做公司网页
  • 有网站怎么做企业邮箱营销课程
  • 苏州外贸网站制作引流推广营销
  • 搜狐快站做网站教程windows优化大师靠谱吗