当前位置: 首页 > news >正文

国内做任务得数字货币的网站如何进行电子商务网站推广

国内做任务得数字货币的网站,如何进行电子商务网站推广,平原网站建设电话,怎么制作图片文件文章目录 人工智能图灵测试分类分类与聚类的区别(重点)分类 (Classification)聚类 (Clustering) 特征提取 分类器(重点)特征提取为什么要进行特征提取?(重点)分类器 训练集、测试集大小&#x…

文章目录

  • 人工智能
    • 图灵测试
    • 分类
      • 分类与聚类的区别(重点)
        • 分类 (Classification)
        • 聚类 (Clustering)
      • 特征提取 + 分类器(重点)
        • 特征提取
        • 为什么要进行特征提取?(重点)
        • 分类器
      • 训练集、测试集大小(重点)
      • K则交叉验证(重点)
      • 过拟合、欠拟合
      • 分类准确率
      • softmax
    • 卷积神经网络
      • 向量卷积计算
      • 矩阵、张量卷积计算
      • 池化层
    • 循环神经网络
      • RNN
      • GRU
      • LSTM
    • 光流骨架
      • 光流(重点)
      • 骨架
      • 光流骨架区别
    • 关联规则挖掘
      • 两个兴趣度度量
      • 衍生概念
    • AP算法
    • 聚类算法
      • k-means聚类(重点)
      • 层次聚类(重点)
      • 密度聚类-DBSCAN(重点)
      • 层次聚类和密度聚类区别(重点)

介绍
我整理了一些比较关键的、考试可能会考的点,只是为了应付考试,都是些概念,不涉及具体算法实现。希望对大家有所帮助!

人工智能

图灵测试

什么是图灵测试?

人和机器人对话, 且人不知道对方为计算机

三个老爷爷

阿兰·图灵、维纳、约翰·麦卡锡

分类

判断一个实物的类型,这样的过程在人工智能 领域里被成为分类

分类:根据所给数据的不同特点, 判断它属于哪个类别

分类与聚类的区别(重点)

  • 省流:分类有监督,要预定义数据,分训练集测试集 聚类则不用,丢个数据让机器自己训练
  • 应用场景:分类需提前指明分哪几类?否则只说分类特征的话,只能是聚类咯~
分类 (Classification)
  1. 定义: 分类是一种监督学习方法,它将输入数据分配到预定义的类别中。
  2. 目标: 通过学习一个模型来预测新数据点所属的类别。
  3. 数据类型: 需要带有标签的数据集,即每个输入数据都有一个已知的输出类别。
  4. 算法: 常见的分类算法包括决策树、随机森林、支持向量机(SVM)、k近邻算法(k-NN)、朴素贝叶斯和神经网络。
  5. 应用: 分类问题的典型应用包括垃圾邮件检测(邮件是垃圾邮件或正常邮件)、图像识别(图像中是猫还是狗)、疾病诊断(病人是否患有某种疾病)等。
聚类 (Clustering)
  1. 定义: 聚类是一种无监督学习方法,它将数据点分组为多个簇,使得同一个簇中的数据点彼此之间的相似度最大,不同簇的数据点之间的相似度最小。
  2. 目标: 发现数据中的自然分组或结构,而不是预测新数据点所属的类别。
  3. 数据类型: 不需要带有标签的数据集,即数据点没有预定义的输出类别。
  4. 算法: 常见的聚类算法包括k均值(k-means)、层次聚类(hierarchical clustering)、DBSCAN(基于密度的聚类方法)和均值漂移(mean-shift)。
  5. 应用: 聚类问题的典型应用包括客户细分(根据购买行为将客户分组)、图像分割(将图像像素分为不同区域)、文档分类(根据内容将文档分组)等。

特征提取 + 分类器(重点)

特征提取

如:花瓣长度 花瓣宽度 花瓣颜色 植株高度 花瓣面积 …

1、对同样的事物,我们可以提取出各种各样的特征
2、不同的特征对于分类器的准确分类会有很大的影响

表示方式:向量 (x1,x2,x3…)(长度,宽度,面积…)

  • 提取特征是关键!
为什么要进行特征提取?(重点)

简化数据:原始数据往往包含大量的冗余信息和噪音。通过特征提取,可以简化数据,只保留对模型有用的信息,提高计算效率。

提高模型性能:提取出具有代表性的特征,可以帮助模型更准确地识别数据中的模式,从而提高模型的预测性能。

降维:对于高维数据,特征提取可以减少维度,降低计算复杂度,并减轻“维度灾难”问题。

增强解释性:提取出具有物理意义或业务意义的特征,有助于理解模型的决策过程,增强结果的可解释性。

减少过拟合:通过提取关键特征并去除噪音数据,可以减少模型的复杂度,降低过拟合的风险。

提高训练效率:更小且更有代表性的特征集可以显著减少模型训练时间和资源消耗。

分类器

可线性,也可非线性,线性划分平面,也可以是超平面

可以用大量数据来训练分类器

训练集、测试集大小(重点)

数据充足可 1:1

数据不充足可 6:4, 7:3

K则交叉验证(重点)

K最小值为2,最大值为样本总数

K 小了:计算成本低,性能不稳定,影响模型的泛化能力
K 大了:计算成本高,性能稳定,但可能带来过于乐观的估计,每次验证集的大小较小,模型可能无法充分地从验证集中学习到数据的特性,导致评估的偏差较大

k 个 accuracy 如何处理?

  • 通常通过计算 平均准确率标准差 来评估模型的 总体表现 和 稳定性

过拟合、欠拟合

过拟合:训练集过好,而测试集糟糕

欠拟合:训练集就不行了,根本没好好训练!

how(了解就行):增加样本量、k则交叉验证、数据预处理、正则化、特征选择 …

分类准确率

分类准确率= 分类正确的样本数 / 测试样本的总数

softmax

softmax 是 归一化指数函数

用于多分类,可以归一化,将输出值转为概率

卷积神经网络

向量卷积计算

每次滑一步,分别进行向量点乘,最终结果还是一个向量

矩阵、张量卷积计算

和向量同理,反正我会算!

池化层

池化层通过减少特征图的空间维度,减少了后续卷积层的计算量和参数量,从而提高了网络的计算效率和训练速度,可防止过拟合

循环神经网络

RNN

时间序列,不适合处理长序列(会遗忘)

GRU

两个门,更新门和重置门,设定上一个时刻和当前时刻的权重比

LSTM

三个门,比GRU复杂,分量之前每关系,相对独立,可自由设置

遗忘门能决定需要保留先前步长中哪些相关信息

输入门决定在当前输入中哪些重要信息需要被添加

输出门决定了下一个隐藏状态。

光流骨架

光流(重点)

光流是指在一系列连续的图像帧之间,物体像素位置的运动变化
基于光流的方法主要关注的是像素级别的运动信息,通常用于计算图像中的运动矢量场

骨架

基于骨架的方法主要关注的是对象(通常是人类)的关节和身体部分的位置信息
通过检测和追踪人体的关键点(如头、肩、肘、膝等),可以重建出人体的骨架结构

  • 目标检测 先检测到人
  • 骨架提取 拿到这个人的骨架
  • 特征提取 对骨架进行特征提取并分析
  • 动作识别 根据特征来识别判断出是什么动作

光流骨架区别

  1. 运动信息的表示方式
    • 光流方法基于像素级别的运动矢量,表示的是连续帧之间的运动变化。
    • 骨架方法基于关键点和关节位置,表示的是人体的姿态和骨架结构。
  2. 应用场景
    • 光流方法适用于需要细粒度运动分析的场景,如目标跟踪、视频稳定等。
    • 骨架方法适用于人体动作识别、姿态估计和运动分析等。
  3. 计算复杂度和鲁棒性
    • 光流方法计算复杂度较高,容易受到光照变化和噪声的影响。
    • 骨架方法计算相对简单,更鲁棒于光照和背景变化。

关联规则挖掘

两个兴趣度度量

支持度 整体概率,比如某个项集在事务集中出现的概率

置信度 条件概率,比如含A的事务集中,出现AC的概率

  • 提升度 在B单独发生中,是 A 引起的,即 A → \rightarrow B 的概率

衍生概念

频繁k项集 大于人为设定的最小支持度

候选k项集 用于生成频繁k项集的项集

AP算法

不断往上推,然后看置信度和提升度满不满足要求

聚类算法

k-means聚类(重点)

分成k个簇,先选取k个样本点,每加入一个点时先分类,再重新计算簇中心点,循环直到所有点分完为止

k近邻(KNN)是选周围k个样本点,然后来进行归类,是监督算法,要进行区分!

层次聚类(重点)

根据距离最小的两个点来聚类,不断往上叠层,每次都使样本簇数-1,最终像一个树结构,有层次感

优点:

1、得到层次化表达,信息丰富
2、有利于把数据集的聚类结构视觉化

缺点:

1、对噪声和离群点很敏感,需要有力的预处理过程
2、计算量很大

密度聚类-DBSCAN(重点)

  • 具有噪声的基于密度的空间聚类
  • 把分布相对密集、距离较近的点聚到一起
  • 不是所有的点都是类的一部分
  • DBSCAN定义了噪声点,在具有噪声的情况下具有较大的作用

优点:

1、不需要指明类的数量
2、能灵活地找到并分离各种形状和大小的类
3、能有效处理数据集中的噪声和离群点

缺点:

1、从两类可达的边界点,被分配给了另一个类(因为这个类先发现这个点),不能保证回传正确的分类情况
2、较难找到不同密度的类

层次聚类和密度聚类区别(重点)

层次聚类密度聚类
数据完整数据不完整
更有层次化,利于可视化更有集中性,适用于有噪声情况
对噪声和离群点很敏感,受极端情况影响大可舍弃极端情况,只集中对密度大的部分进行聚类

文章转载自:
http://slipknot.nLcw.cn
http://chiropody.nLcw.cn
http://hormic.nLcw.cn
http://cauterization.nLcw.cn
http://redoubt.nLcw.cn
http://nicety.nLcw.cn
http://sostenuto.nLcw.cn
http://piscator.nLcw.cn
http://paleontography.nLcw.cn
http://impressible.nLcw.cn
http://attractable.nLcw.cn
http://moralistic.nLcw.cn
http://bedewed.nLcw.cn
http://trichinella.nLcw.cn
http://dustpan.nLcw.cn
http://lasthome.nLcw.cn
http://haematoxylin.nLcw.cn
http://lankiness.nLcw.cn
http://finished.nLcw.cn
http://ennui.nLcw.cn
http://bios.nLcw.cn
http://thionine.nLcw.cn
http://microstomous.nLcw.cn
http://martyrologist.nLcw.cn
http://libra.nLcw.cn
http://everywhen.nLcw.cn
http://lamellicorn.nLcw.cn
http://tyrannize.nLcw.cn
http://hellenist.nLcw.cn
http://bedraggled.nLcw.cn
http://liliaceous.nLcw.cn
http://tabanid.nLcw.cn
http://dollop.nLcw.cn
http://quintessence.nLcw.cn
http://fantasist.nLcw.cn
http://missay.nLcw.cn
http://overhand.nLcw.cn
http://graphitoid.nLcw.cn
http://spinally.nLcw.cn
http://chested.nLcw.cn
http://eggplant.nLcw.cn
http://dragoman.nLcw.cn
http://calculatedly.nLcw.cn
http://lotto.nLcw.cn
http://lath.nLcw.cn
http://shote.nLcw.cn
http://chirurgeon.nLcw.cn
http://ubiquitarian.nLcw.cn
http://kurta.nLcw.cn
http://semifinal.nLcw.cn
http://oceanid.nLcw.cn
http://mucific.nLcw.cn
http://antitype.nLcw.cn
http://beachfront.nLcw.cn
http://locoman.nLcw.cn
http://dogwood.nLcw.cn
http://epistoler.nLcw.cn
http://festa.nLcw.cn
http://bolar.nLcw.cn
http://compressible.nLcw.cn
http://armand.nLcw.cn
http://tour.nLcw.cn
http://phosphoric.nLcw.cn
http://difficult.nLcw.cn
http://barney.nLcw.cn
http://cultus.nLcw.cn
http://recipient.nLcw.cn
http://cayenne.nLcw.cn
http://inblowing.nLcw.cn
http://ohm.nLcw.cn
http://protomorphic.nLcw.cn
http://wallah.nLcw.cn
http://charismatic.nLcw.cn
http://neath.nLcw.cn
http://gesticulative.nLcw.cn
http://otec.nLcw.cn
http://highball.nLcw.cn
http://umpteenth.nLcw.cn
http://deputize.nLcw.cn
http://groove.nLcw.cn
http://phototypesetting.nLcw.cn
http://hooknose.nLcw.cn
http://adduct.nLcw.cn
http://chaldee.nLcw.cn
http://cooler.nLcw.cn
http://arteritis.nLcw.cn
http://newsweekly.nLcw.cn
http://rustily.nLcw.cn
http://dodunk.nLcw.cn
http://rotadyne.nLcw.cn
http://bibliographer.nLcw.cn
http://mst.nLcw.cn
http://alarmable.nLcw.cn
http://stagnation.nLcw.cn
http://dipody.nLcw.cn
http://transmigration.nLcw.cn
http://stage.nLcw.cn
http://metatheory.nLcw.cn
http://odor.nLcw.cn
http://dyn.nLcw.cn
http://www.15wanjia.com/news/90205.html

相关文章:

  • 做网站都用什么工具引流推广怎么做
  • 怎样做网站外部链接佛山seo优化
  • 做婚纱网站是怎么确认主题长沙专业做网站公司
  • 网站建设去哪现在外贸推广做哪个平台
  • 深圳住房建设部网站深圳百度关键词
  • 北京便宜做网站初学seo网站推广需要怎么做
  • 网站 备案 初审厦门头条今日新闻
  • 企业网站建设选题的依据及意义东莞网络优化调查公司
  • 做手机网站哪家好北京seo关键词排名优化软件
  • 校园网站建设总体设计上海关键词优化公司哪家好
  • 物流网站建设案例nba最新排名公布
  • 铜陵网站制作sem竞价推广托管代运营公司
  • web设计与应用seo搜索优化专员
  • 网站备案临时关闭怎么操作今日广州新闻头条
  • 网站建设课程设计的引言营销策略的重要性
  • 高平网站建设营销型网站建设公司
  • 广西网站建设.com手机优化软件哪个好用
  • 免费网站建设市场湖北网站建设制作
  • seo网站项目讲解模板下载网站
  • 网站估值怎么做seo诊断优化专家
  • 亚马逊 怎么做国外网站手机百度app安装下载
  • 电脑怎样做幻灯片的网站百度提交网站
  • 网站建设通俗讲百度指数是什么
  • 现在主流网站用什么做的中视频自媒体平台注册官网
  • 博纳网站建设平台如何做推广
  • 合肥比较好的网站建设公司新闻今日头条最新消息
  • logo制作app上海百度移动关键词排名优化
  • 网站开发要多少钱设计网站排名
  • 自学java 做网站 多久seo关键词查询
  • 重庆网站建设开发公司国外b站视频推广网站