当前位置: 首页 > news >正文

营销型网站建设实战》怎么自己创建网站

营销型网站建设实战》,怎么自己创建网站,邢台建网站公司,网站设计规划书怎么写【RAG框架】GoMate:RAG Framework within Reliable input,Trusted output 【项目链接】:https://github.com/gomate-community/GoMate 一、赛题背景 RAG(检索增强生成)是一种结合了检索模型和生成模型的技术,它通过检…

【RAG框架】GoMate:RAG Framework within Reliable input,Trusted output

【项目链接】:https://github.com/gomate-community/GoMate

一、赛题背景

RAG(检索增强生成)是一种结合了检索模型和生成模型的技术,它通过检索大量外部知识来辅助文本生成,从而提高大型语言模型(LLMs)的准确度和可靠性。

RAG特别适合于需要不断更新知识的知识密集型场景或特定领域应用,它通过引入外部信息源,有效缓解了大语言模型在领域知识缺乏、信息准确性问题以及生成虚假内容等方面的挑战。本次挑战赛旨在探索RAG技术的极限,鼓励开发者、研究人员和爱好者利用RAG技术解决实际问题,推动人工智能领域的进步。

二、赛题任务

赛题需要参赛选手设计并实现一个RAG模型,该模型能够从给定的问题出发,检索知识库中的相关信息。利用检索到的信息,结合问题本身,生成准确、全面、权威的回答。

三、评审规则

1.数据说明

数据集还可能包括一些未标注的文本,需要参赛者使用RAG技术中的检索增强方法来找到相关信息,并生成答案。这要求参赛者不仅要有强大的检索能力,还要能够生成准确、连贯且符合上下文的文本。

测试集为模拟生成的用户提问,需要参赛选手结合提问和语料完成回答。需注意,在问题中存在部分问题无法回答,需要选手设计合适的策略进行拒绝回答的逻辑。

• corpus.txt.zip:语料库,每行为一篇新闻

• test_question.csv:测试提问

  1. 评审规则

对于测试提问的回答,采用字符重合比例进行评价,分数最高为1。

四、数据分析

  • 检索语料

  • 文本长度

五、RAG基线实现

import pickleimport pandas as pd
from tqdm import tqdmfrom gomate.modules.document.chunk import TextChunker
from gomate.modules.document.txt_parser import TextParser
from gomate.modules.document.utils import PROJECT_BASE
from gomate.modules.generator.llm import GLM4Chat
from gomate.modules.reranker.bge_reranker import BgeRerankerConfig, BgeReranker
from gomate.modules.retrieval.bm25s_retriever import BM25RetrieverConfig
from gomate.modules.retrieval.dense_retriever import DenseRetrieverConfig
from gomate.modules.retrieval.hybrid_retriever import HybridRetriever, HybridRetrieverConfigdef generate_chunks():tp = TextParser()tc = TextChunker()paragraphs = tp.parse(r'H:/2024-Xfyun-RAG/data/corpus.txt', encoding="utf-8")print(len(paragraphs))chunks = []for content in tqdm(paragraphs):chunk = tc.chunk_sentences([content], chunk_size=1024)chunks.append(chunk)with open(f'{PROJECT_BASE}/output/chunks.pkl', 'wb') as f:pickle.dump(chunks, f)if __name__ == '__main__':# test_path="H:/2024-Xfyun-RAG/data/test_question.csv"# embedding_model_path="H:/pretrained_models/mteb/bge-m3"# llm_model_path="H:/pretrained_models/llm/Qwen2-1.5B-Instruct"test_path = "/data/users/searchgpt/yq/GoMate_dev/data/competitions/xunfei/test_question.csv"embedding_model_path = "/data/users/searchgpt/pretrained_models/bge-large-zh-v1.5"llm_model_path = "/data/users/searchgpt/pretrained_models/glm-4-9b-chat"# ====================文件解析+切片=========================generate_chunks()with open(f'{PROJECT_BASE}/output/chunks.pkl', 'rb') as f:chunks = pickle.load(f)corpus = []for chunk in chunks:corpus.extend(chunk)# ====================检索器配置=========================# BM25 and Dense Retriever configurationsbm25_config = BM25RetrieverConfig(method='lucene',index_path='indexs/description_bm25.index',k1=1.6,b=0.7)bm25_config.validate()print(bm25_config.log_config())dense_config = DenseRetrieverConfig(model_name_or_path=embedding_model_path,dim=1024,index_path='indexs/dense_cache')config_info = dense_config.log_config()print(config_info)# Hybrid Retriever configuration# 由于分数框架不在同一维度,建议可以合并hybrid_config = HybridRetrieverConfig(bm25_config=bm25_config,dense_config=dense_config,bm25_weight=0.7,  # bm25检索结果权重dense_weight=0.3  # dense检索结果权重)hybrid_retriever = HybridRetriever(config=hybrid_config)# 构建索引# hybrid_retriever.build_from_texts(corpus)# 保存索引# hybrid_retriever.save_index()# 加载索引hybrid_retriever.load_index()# ====================检索测试=========================query = "新冠肺炎疫情"results = hybrid_retriever.retrieve(query, top_k=5)# Output resultsfor result in results:print(f"Text: {result['text']}, Score: {result['score']}")# ====================排序配置=========================reranker_config = BgeRerankerConfig(model_name_or_path="/data/users/searchgpt/pretrained_models/bge-reranker-large")bge_reranker = BgeReranker(reranker_config)# ====================生成器配置=========================# qwen_chat = QwenChat(llm_model_path)glm4_chat = GLM4Chat(llm_model_path)# ====================检索问答=========================test = pd.read_csv(test_path)answers = []for question in tqdm(test['question'], total=len(test)):search_docs = hybrid_retriever.retrieve(question)search_docs = bge_reranker.rerank(query=question,documents=[doc['text'] for idx, doc in enumerate(search_docs)])# print(search_docs)content = '/n'.join([f'信息[{idx}]:' + doc['text'] for idx, doc in enumerate(search_docs)])answer = glm4_chat.chat(prompt=question, content=content)answers.append(answer[0])print(question)print(answer[0])print("************************************/n")test['answer'] = answerstest[['answer']].to_csv(f'{PROJECT_BASE}/output/gomate_baseline.csv', index=False)
http://www.15wanjia.com/news/7257.html

相关文章:

  • 仙游哪里可以做网站的深圳市seo点击排名软件价格
  • 开发 网站 沈阳百度网址大全下载安装
  • 中山市网站制作百度竞价优化
  • 用vs代码做网站百度经验首页官网
  • 网站提高收录和访问量什么建站程序最利于seo
  • 网站建设推荐公司嘉兴百度快照优化排名
  • 国外便宜的云服务器西安seo优化工作室
  • 网站建设四步骤seo行业
  • b2b2c多用户商城seo关键词排名优化的方法
  • 北京网站制作到诺然好看的seo网站
  • 做搜索引擎的网站有哪些成人速成班有哪些专业
  • 视频模板网站推荐新手seo要学多久
  • 有什么比较好的做简历的网站常见的营销手段
  • 高端网站建设文案百度标注平台怎么加入
  • 网站域名证书查询百度广告安装入口
  • 女的和男做那个视频网站武汉最新疫情
  • 做网站之前备案开发一个app需要多少钱
  • 免费做威客的网站谷歌浏览器 官网下载
  • 网站开发的目的和意义网站建站哪家公司好
  • 摄影师网站html5如何在各大平台推广
  • 餐饮网站建设需求分析网络推广网站电话
  • 哪些网站可以做调查赚钱北京网站优化排名推广
  • 网站建设咨询网站优化团队
  • 做爰的网站拼多多关键词怎么优化
  • 永州做网站费用做网络营销推广
  • 网站建设可行性方案模板湖南靠谱关键词优化
  • 做网站可能存在的问题seo包年优化平台
  • 上海做无创DNA医院网站百度云资源搜索
  • 数字营销案例100例seo招聘信息
  • 自贡网站开发谷歌商店paypal官网下载