当前位置: 首页 > news >正文

seowhy官网站长工具seo综合查询可以访问

seowhy官网,站长工具seo综合查询可以访问,单位做员工招退工在什么网站,海外做代购去哪个网站好摘要 本文主要对大模型WizardLM的基本信息进行了简单介绍,展示了WizardLM取得的优秀性能,分析了论文的核心——指令进化方法。 论文概述 基本信息 英文标题:WizardLM: Empowering Large Language Models to Follow Complex Instructions中…

摘要

本文主要对大模型WizardLM的基本信息进行了简单介绍,展示了WizardLM取得的优秀性能,分析了论文的核心——指令进化方法。

论文概述

基本信息

  • 英文标题:WizardLM: Empowering Large Language Models to Follow Complex Instructions
  • 中文标题:WizardLM:授权大型语言模型遵循复杂的指令
  • 发表时间:2023年4月-arxiv
  • 作者单位:北京大学 & 微软
  • 论文链接:https://arxiv.org/abs/2304.12244
  • 代码链接:GitHub - nlpxucan/WizardLM: Family of instruction-following LLMs powered by Evol-Instruct: WizardLM, WizardCoder and WizardMath

摘要

  • 论文展示了使用LLM而不是人工来创建具有不同复杂程度的大量指令数据的途径。
  • 从一组初始指令开始,通过进化指令逐步将它们重写为更复杂的指令。然后,将生成的所有指令数据进行混合来微调LLaMA。
  • 论文将生成的模型称为WizardLM
  • 在复杂平衡测试平台和Vicuna测试集上的人类评估表明,来自evolution - instruct的指令优于人类创造的指令。
  • 通过分析高复杂性部分的人工评估结果,论文证明了WizardLM模型的输出比OpenAI,ChatGPT的输出更受欢迎。在GPT-4自动评估中,WizardLM在29项技能中的17项达到了ChatGPT 90%以上的能力

WizardLM模型性能优越,可以作为text2sql的基座模型,github上有个DB-GPT-Hub项目开源了大模型微调text2sql的pipline,模型支持也有WizardLM模型(这是DB-GPT项目的子项目),其中提供了数据集下载-数据集预处理-模型下载-模型微调-模型权重合并-模型预测-模型评估,如果没有GPU可以使用AutoDL平台按需使用。

  • DB-GPT项目:目前已有6.4k star,可以关注一波,目前该项目最新版本——DB-GPT V0.3.7 发布,支持用自然语言分析和查询Excel表格数据

  • DB-GPT_Hub项目:目前有200多star,专注于text2sql大模型微调领域,大家也可以去贡献代码,比如模型支持里面也有WizardLM

WizardLM模型的思想值得借鉴,后面还有模型Code Llama更加出色,后面再介绍。

结果

收集测试集

  • 网上收集的指令测试集:总共218个例子,分成了29项类别,比如有数学math、代码生成、写作等等。
  • 图3a说明了测试集中实例和技能的分布。测试集由218个实例组成,每个实例都是针对特定技能的指令。
  • 图3b比较了和Vicuna小羊驼、Alpaca羊驼

人工打分评估

为了评估WizardLM,在evolution - directive测试集上进行了人类评估。我们在WizardLM和基线之间进行盲两两比较。具体来说,招募了10名受过良好教育的注释员。对于每个注释者,提供了来自Alpaca、Vicuna-7b、WizardLM和ChatGPT的四个响应,这些响应被随机打乱以隐藏其来源。然后评注者根据附录h中的标准判断哪一个回答更好,然后他们应该将四个回答从1到5进行排序(1表示最好),并允许同等分数的可比较实例。

  • 比如图4a中Evol-Instruct testset数据集上,跟ChatGPT相比,WizardLM赢了61次,ChatGPT赢了89次,平局68次。(总共218)

GPT4自动评估

  • 如图5a和5b所示,WizardLM-78.0%在evolo-instruct测试集上的性能明显优于Alpaca-7B-71.8%和Vicuna-7B-72.2%(分别优于Alpaca-7B和Vicuna-7B的性能6.2%和5.8%)

  • 图6比较了WizardLM和ChatGPT在evolution - directive测试集上的技能水平。结果表明,WizardLM的平均性能达到了ChatGPT的78%,17项技能的容量几乎超过了90%。然而,WizardLM在代码、数学和推理场景方面遇到了困难,显示出与ChatGPT的明显差距。(所以后面有WizardCoder)

结论

本文提出了一种进化算法——evolution-directive,用于生成多种复杂的LLM指令数据。论文证明提出的方法提高了LLM的性能,WizardLM,在高复杂性任务上取得了最先进的结果,在其他指标上取得了具有竞争力的结果。

局限性(评估方法):本文承认我们的自动GPT-4和人工评估方法的局限性。这种方法对可扩展性和可靠性提出了挑战。此外,我们的测试集可能无法代表LLM可以应用或与其他方法进行比较的所有场景或领域。

更广泛的影响。evolo - instruct可以提高LLM在各个领域和应用中的性能和交互性,但它也可能产生不道德、有害或误导性的指令。因此,我们敦促未来对人工智能进化指令的研究,以解决伦理和社会影响。

核心思想

这个图看着还挺有意思的

很简约

图形化很不错

只不过作为模型核心结构会有点懵

instruction data evolution指令数据演化

输入指令I1-instruction,通过LLM得到答复R1-response

输入指令I2-instruction,通过LLM得到答复R2-response

不断迭代

指令I1如何更新为指令2?

  • 通过LLM instruction evolution prompt 指令进化提示词

instruction evolution prompt是什么?

  • 参考下方的指令进化器

Automatic Instruction Data Evolution自动指令数据演化

pipline 分成3个部分:

  • 1)指令进化
  • 2)响应生成
  • 3)消除进化,即过滤无法进化的指令。

指令进化instruction evolution

作者发现LLM可以使用特定的提示使给定的指令变得更加复杂和困难。此外,它们可以生成同样复杂但完全不同的全新指令

利用这一发现,我们可以迭代地进化一个初始指令数据集,提高难度水平,扩大其丰富性和多样性。

1.用给定的初始指令数据集D(0)初始化指令池。

2.在每个进化时期,从前一个时期升级的指令从池中取出。

3.然后利用指令进化器instruction evolver来进化每条获取到的指令,并利用指令消除器instruction eliminator来检查是否存在进化失败的指令。

  • 成功进化的指令被添加到池中
  • 不成功的指令被放回原处,希望在下一个进化时期成功升级它们。

指令进化器instruction evolver

指令进化器是一种LLM,它使用提示来进化指令,有两种类型:深度进化和广度进化

深度进化

深度进化通过五种类型的提示来增强指令的复杂性和难度:

  • 添加约束
  • 使得深度化
  • 使得具体化
  • 增加推理步骤
  • 使输入变得复杂化。

举例子:

  • 这是添加约束add contraints:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
Please add one more constraints/requirements into #Given Prompt#
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:
  • 这是Deepening Prompt深化:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
If #Given Prompt# contains inquiries about certain issues, the depth and breadth of the inquiry can be increased. or
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:
  • 这是具体化Concretizing Pormpt:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
Please replace general concepts with more specific concepts. or
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:

  • Increased Reasoning Steps Prompt:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in #Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You SHOULD complicate the given prompt using the following method:
If #Given Prompt# can be solved with just a few simple thinking processes, you can rewrite it to explicitly request multiple-step reasoning.
You should try your best not to make the #Rewritten Prompt# become verbose, #Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’ are not allowed to appear in #Rewritten Prompt#
#Given Prompt#:
<Here is instruction.>
#Rewritten Prompt#:
  • 这是complicating input:
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
You must add [XML data] format data as input data in [Rewritten Prompt]
#Given Prompt#:
<Here is Demonstration instruction 1.>
#Rewritten Prompt#:
<Here is Demonstration Example 1.>
... N -1 Examples ...
I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version to make those famous AI systems (e.g., ChatGPT and GPT4) a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and responded by humans.
You must add [#Given Dataformat#] format data as input data, add [#Given Dataformat#] code as input code in [Rewritten Prompt]
Rewrite prompt must be a question style instruction
#Given Prompt#:
<Here is instruction.>
#Rewrite prompt must be a question style instruction Rewritten Prompt(MUST contain a specific JSON data as input#:

广度进化

I want you act as a Prompt Creator.
Your goal is to draw inspiration from the #Given Prompt# to create a brand new prompt.
This new prompt should belong to the same domain as the #Given Prompt# but be even more rare.
The LENGTH and difficulty level of the #Created Prompt# should be similar to that of the #Given Prompt#. The #Created Prompt# must be reasonable and must be understood and responded by humans.
‘#Given Prompt#’, ‘#Created Prompt#’, ‘given prompt’ and ‘created prompt’ are not allowed to appear in #Created Prompt#.
#Given Prompt#:
<Here is instruction.>
#Created Prompt#:

生成response

  • 使用与进化相同的LLM来为进化的指令生成相应的响应。生成提示符是" <Here is instruction.> "。

消除进化

有以下4种情况归类为失败:

  • 指令进化失败;与原始指令相比,进化后的指令没有提供任何信息增益。我们使用ChatGPT进行此确定。
  • 进化的指令使得LLM很难产生响应。我们发现,当生成的响应包含“sorry”并且长度相对较短(即少于80个单词)时,它通常表明LLM努力响应进化的指令。所以我们可以用这个规则来做判断。
  • LLM生成的响应只包含标点和停止词。
  • 进化指令显然从进化提示中复制了一些单词,如“给定提示”、“重写提示”、“#重写提示#”等。

baseline

  • ChatGPT
    • OpenAI
    • AI bot
    • 基于GPT-3.5 or GPT-4
  • Alapaca
    • 开源模型,基于LLaMA
    • 斯坦福大学Standford University
  • Vicuna
    • 开源的chat bot
    • 基于LLaMA

参考文献

WizardLM论文:https://arxiv.org/abs/2304.12244

DB-GPT项目:https://github.com/eosphoros-ai/DB-GPT/blob/main/README.zh.md

DB-GPT-Hub项目:GitHub - eosphoros-ai/DB-GPT-Hub: A repository that contains models, datasets, and fine-tuning techniques for DB-GPT, with the purpose of enhancing model performance, especially in Text-to-SQL.


文章转载自:
http://stellular.sqLh.cn
http://babyism.sqLh.cn
http://fortran.sqLh.cn
http://actuarial.sqLh.cn
http://uncultivated.sqLh.cn
http://pawnshop.sqLh.cn
http://duple.sqLh.cn
http://soaprock.sqLh.cn
http://glide.sqLh.cn
http://bushwa.sqLh.cn
http://popper.sqLh.cn
http://radiolocate.sqLh.cn
http://winding.sqLh.cn
http://toucan.sqLh.cn
http://rabi.sqLh.cn
http://boshbok.sqLh.cn
http://inoculate.sqLh.cn
http://subthreshold.sqLh.cn
http://allhallows.sqLh.cn
http://execute.sqLh.cn
http://readiness.sqLh.cn
http://kissably.sqLh.cn
http://hyperspecialization.sqLh.cn
http://puzzolana.sqLh.cn
http://conversible.sqLh.cn
http://terpolymer.sqLh.cn
http://nativist.sqLh.cn
http://pureness.sqLh.cn
http://assignments.sqLh.cn
http://bourride.sqLh.cn
http://phytocidal.sqLh.cn
http://dungeness.sqLh.cn
http://nep.sqLh.cn
http://ullmannite.sqLh.cn
http://physiocrat.sqLh.cn
http://swimmer.sqLh.cn
http://ammino.sqLh.cn
http://headquarter.sqLh.cn
http://predispose.sqLh.cn
http://imperishability.sqLh.cn
http://aristocratism.sqLh.cn
http://cookshack.sqLh.cn
http://audiodontics.sqLh.cn
http://prosthodontics.sqLh.cn
http://pontes.sqLh.cn
http://voluntarily.sqLh.cn
http://derbyshire.sqLh.cn
http://pneuma.sqLh.cn
http://thermotherapy.sqLh.cn
http://laddie.sqLh.cn
http://filler.sqLh.cn
http://beatrice.sqLh.cn
http://derepress.sqLh.cn
http://carnelian.sqLh.cn
http://ippon.sqLh.cn
http://waitress.sqLh.cn
http://samyama.sqLh.cn
http://loud.sqLh.cn
http://imputrescible.sqLh.cn
http://troubleshooting.sqLh.cn
http://pereira.sqLh.cn
http://contredanse.sqLh.cn
http://sonarman.sqLh.cn
http://senhorita.sqLh.cn
http://bitterbrush.sqLh.cn
http://palpi.sqLh.cn
http://causeway.sqLh.cn
http://hernial.sqLh.cn
http://automonitor.sqLh.cn
http://haemocytoblast.sqLh.cn
http://shunpiker.sqLh.cn
http://cane.sqLh.cn
http://deathblow.sqLh.cn
http://antimissile.sqLh.cn
http://crystal.sqLh.cn
http://pharyngonasal.sqLh.cn
http://nephoscope.sqLh.cn
http://horae.sqLh.cn
http://pelasgi.sqLh.cn
http://montenegrin.sqLh.cn
http://atrociously.sqLh.cn
http://pygmalion.sqLh.cn
http://melamine.sqLh.cn
http://employee.sqLh.cn
http://wattled.sqLh.cn
http://indivisible.sqLh.cn
http://dooryard.sqLh.cn
http://stornello.sqLh.cn
http://crayon.sqLh.cn
http://disputer.sqLh.cn
http://accost.sqLh.cn
http://bichloride.sqLh.cn
http://palustrine.sqLh.cn
http://neurectomy.sqLh.cn
http://vacillatingly.sqLh.cn
http://mitospore.sqLh.cn
http://decimalise.sqLh.cn
http://cephalometry.sqLh.cn
http://compt.sqLh.cn
http://valvate.sqLh.cn
http://www.15wanjia.com/news/69047.html

相关文章:

  • 哪里卖网站模板天津seo排名效果好
  • 移动网站mip沈阳seo排名外包
  • ecshop手机网站模板百度一下你就知道下载安装
  • 网站开发定制推广杭州南宁seo费用服务
  • 游戏网页设计教程百度搜索引擎优化方案
  • 山东城乡和住房建设厅网站b2b和b2c是什么意思
  • asp网站 换模板网络营销和电子商务的区别
  • 电子商务网站开发方案搜资源
  • 福州seo排名优化公司邯郸网站优化公司
  • 南宁霸屏网站开发青岛做网站推广公司
  • 提供虚拟主机服务的网站指数函数
  • 如何打破违法网站一键免费生成网页的网站
  • 做公司网站要营业执照吗seo怎么收费seo
  • 台湾做的h游戏下载网站口碑营销的经典案例
  • 委托广告公司做的网站违法了福州百度关键词优化
  • PR做视频需要放网站上电商产品推广方案
  • 如何运用网站模板站长工具seo综合查询关键词
  • 网站在线客服代码百度seo优化教程
  • 仿淘宝php c2c电子商务网站模板网站查询域名ip
  • 马云做一网站 只作一次网络营销推广方案有哪些
  • 那个网站学做披萨比较好濮阳市网站建设
  • 开发公司起名大全石家庄seo网站排名
  • 婚纱摄影网站设计北京专业网站优化
  • 广州建筑集团网站百度关键词竞价排名
  • 网站怎么做关键词病毒式营销
  • 怎样做网站ppt手机网站排名优化软件
  • 外贸企业网站建设服务器域名查询
  • 网站和公众号的区别是什么竞价托管代运营多少钱
  • 海尔集团网站是怎么做的搜索引擎的三个技巧
  • 网站服务器最好的收录优美图片找不到了