当前位置: 首页 > news >正文

如何在网站开发客户电子商务营销的概念

如何在网站开发客户,电子商务营销的概念,中山网站建设文化方案,政府网站建设整改工作情况报告目录 1、什么是Hive 2、Hive的优缺点 2.1、 优点 2.2、 缺点 2.2.1、Hive的HQL表达能力有限 2.2.2、Hive的效率比较低 3、Hive架构原理 3.1、用户接口:Client 3.2、元数据:Metastore 3.3、Hadoop 3.4、驱动器:Driver Hive运行机制…

目录

1、什么是Hive

2、Hive的优缺点

2.1、 优点

2.2、 缺点

2.2.1、Hive的HQL表达能力有限

2.2.2、Hive的效率比较低

3、Hive架构原理

3.1、用户接口:Client

3.2、元数据:Metastore

3.3、Hadoop

3.4、驱动器:Driver

Hive运行机制

4、Hive和数据库比较

 4.1、 数据更新

4.2、执行延迟

4.3、数据规模


1、什么是Hive

Hive:由Facebook开源用于解决海量结构化日志的数据统计。

Hive设计的初衷是:对于大量的数据,使得数据汇总,查询和分析更加简单。它提供了SQL,允许用户更加简单地进行查询,汇总和数据分析。同时,Hive的SQL给予了用户多种方式来集成自己的功能,然后做定制化的查询,例如用户自定义函数(User Defined Functions,UDFs).

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。

本质是:将HQL转化成MapReduce程序

1)Hive处理的数据存储在HDFS

2)Hive分析数据底层的实现是MapReduce

3)执行程序运行在Yarn上

2、Hive的优缺点


2.1、 优点

  • 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
  • 避免了去写MapReduce,减少开发人员的学习成本。
  • Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
  • Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
  • Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。


2.2、 缺点


2.2.1、Hive的HQL表达能力有限

(1)迭代式算法无法表达

(2)数据挖掘方面不擅长

2.2.2、Hive的效率比较低

(1)Hive自动生成的MapReduce作业,通常情况下不够智能化

(2)Hive调优比较困难,粒度较粗

3、Hive架构原理

3.1、用户接口:Client

CLI(hive shell)、JDBC/ODBC(java访问hive)、WEBUI(浏览器访问hive)

3.2、元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

3.3、Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

3.4、驱动器:Driver

  • 解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
  • 编译器(Physical Plan):将AST编译生成逻辑执行计划。
  • 优化器(Query Optimizer):对逻辑执行计划进行优化。
  • 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

Hive运行机制

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
 

4、Hive和数据库比较

    由于Hive采用类似SQL的查询语言HQL,因此很容易将Hive理解为数据库。其实从结构来看,Hive 和数据库除了用于类似的查询语言,
再无类似之处。

 4.1、 数据更新

    由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少。因此,Hive中不建议对数据的改写,所有数据都是在加载的时候确定好的。而数据库中的数据通常是需要进行

修改的,因此可以采用insert into ... values添加数据,使用update ... set修改数据

4.2、执行延迟

     Hive在查询数据的时候,由于没有索引,需要扫描整个表。因此延迟较高。由于Hive底层使用的MR框架,而MR本身具有较高的延迟,因此在利用MR执行Hive查询的时候,也有较高的延迟。

4.3、数据规模

由于Hive简历在集群上可以利用MR进行并行计算,因此可以支持很大规模的数据。

http://www.15wanjia.com/news/52899.html

相关文章:

  • 英文网站建设公司最全bt搜索引擎入口
  • html代码软件简述seo对各类网站的作用
  • 专门做微信公众号的网站网站维护推广的方案
  • 贵州省住房与城乡建设厅网站网站赚钱
  • 鼎诚网站建设系统优化助手
  • 圆方k20在线设计网站百度怎么推广自己的店铺
  • 北京做网站供应商网站关键词推广优化
  • ps网页模板优化教程
  • wordpress 微信 登录新塘网站seo优化
  • 做律师网站公司百度seo排名优化技巧分享
  • 做网站跳转搜索关键词的工具
  • 都安网站建设网店推广是什么
  • 做影视网站用的封面怎么做网站优化
  • 厦门 网站建设 公司网络营销服务工具
  • 手机移动端网站怎么做的竞价托管怎么做
  • 网站后台分模块搜索推广渠道
  • 现货商品交易平台seo实训报告
  • asp建设的网站制作毕节地seo
  • 酒店网站开发今天国内新闻
  • 界面设计最好的网站佛山seo关键词排名
  • 9377手游平台站长工具seo综合查询网
  • 手机网站乱弹微信视频号小店
  • 国内互联网大厂有哪些站长工具seo综合查询收费吗
  • 网站响应式和电脑手机推广策略
  • 九里徐州网站开发网络营销的五大特点
  • tq网站建设湖南网站建设加盟代理
  • 诸暨市建设局官方网站乔拓云网站建设
  • 做电子商务网站建设工资多少搜索引擎国外
  • 网站升级的内容包括哪些产品推广图片
  • 那个网站效果图做的好怎样才能上百度