当前位置: 首页 > news >正文

企业商标图案大全北京seo招聘网

企业商标图案大全,北京seo招聘网,长宁区网站建设网,生活中优秀的产品设计目录 损失函数与反向传播 L1Loss MSELOSS CrossEntropyLoss 损失函数与反向传播 所需的Loss计算函数都在torch.nn的LossFunctions中,官方网址是:torch.nn — PyTorch 2.0 documentation。举例了L1Loss、MSELoss、CrossEntropyLoss。 在这些Loss函数…

目录

损失函数与反向传播

L1Loss

MSELOSS

CrossEntropyLoss


损失函数与反向传播

所需的Loss计算函数都在torch.nn的LossFunctions中,官方网址是:torch.nn — PyTorch 2.0 documentation。举例了L1Loss、MSELoss、CrossEntropyLoss。


在这些Loss函数的使用中,有以下注意的点:
(1) 参数reduction='mean',默认是'mean'表示对差值的和求均值,还可以是'sum'则不会求均值。
(2) 一定要注意Input和target的shape。 

L1Loss

创建一个标准,用于测量中每个元素之间的Input: x xx 和 target: y yy。

创建一个标准,用来测量Input: x xx 和 target: y yy 中的每个元素之间的平均绝对误差(MAE)(L 1 L_1L 1范数)。

 

 

Shape:

Input: (∗ *∗), where ∗ *∗ means any number of dimensions. 会对所有维度的loss求均值
Target: (∗ *∗), same shape as the input. 与Input的shape相同
Output: scalar.返回值是标量。

假设 a aa 是标量,则有:

type(a) = torch.Tensor
a.shape = torch.Size([])
a.dim = 0
 

MSELOSS

创建一个标准,用来测量Input: x xx 和 target: y yy 中的每个元素之间的均方误差(平方L2范数)。


 

Shape:

Input: (∗ *∗), where ∗ *∗ means any number of dimensions. 会对所有维度求loss
Target: (∗ *∗), same shape as the input. 与Input的shape相同
Output: scalar.返回值是标量。


CrossEntropyLoss

该标准计算 input 和 target 之间的交叉熵损失。

非常适用于当训练 C CC 类的分类问题(即多分类问题,若是二分类问题,可采用BCELoss)。如果要提供可选参数 w e i g h t weightweight ,那 w e i g h t weightweight 应设置为1维tensor去为每个类分配权重。这在训练集不平衡时特别有用。

期望的 input应包含每个类的原始的、未标准化的分数。input必须是大小为C CC(input未分批)、(m i n i b a t c h , C minibatch,Cminibatch,C) or (m i n i b a t c h , C , d 1 , d 2 , . . . d kminibatch,C,d_1,d_2,...d_kminibatch,C,d 1,d 2,...d k )的Tensor。最后一种方法适用于高维输入,例如计算2D图像的每像素交叉熵损失。

期望的 target应包含以下内容之一:

(1) (target包含了)在[ 0 , C ) [0,C)[0,C)区间的类别索引,C CC是类别总数量。如果指定了 ignore_index,则此损失也接受此类索引(此索引不一定在类别范围内)。reduction='none'情况下的loss为

注意:l o g loglog默认是以10为底的。
 

x是input,y yy是target,w ww是权重weight,C CC是类别数量,N NN涵盖minibatch维度且d 1 , d 2 . . . , d k d_1,d_2...,d_kd 1,d 2...,d k分别表示第k个维度。(N太难翻译了,总感觉没翻译对)如果reduction='mean'或'sum',

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torchvision.transforms import transformsdataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)class Model(nn.Module):def __init__(self):super(Model, self).__init__()self.model = Sequential(Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),MaxPool2d(kernel_size=2, stride=2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):  # 模型前向传播return self.model(x)model = Model()  # 定义模型
loss_cross = nn.CrossEntropyLoss()  # 定义损失函数for data in dataloader:imgs, targets = dataoutputs = model(imgs)# print(outputs)    # 先打印查看一下结果。outputs.shape=(2, 10) 即(N,C)# print(targets)    # target.shape=(2) 即(N)# 观察outputs和target的shape,然后选择使用哪个损失函数res_loss = loss_cross(outputs, targets)res_loss.backward()  # 损失反向传播print(res_loss)#
# inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
# targets = torch.tensor([1, 2, 5], dtype=torch.float32)
#
# inputs = torch.reshape(inputs, (1, 1, 1, 3))
# targets = torch.reshape(targets, (1, 1, 1, 3))
#
# # -------------L1Loss--------------- #
# loss = nn.L1Loss()
# res = loss(inputs, targets)  # 返回的是一个标量,ndim=0
# print(res)  # tensor(1.6667)
#
# # -------------MSELoss--------------- #
# loss_mse = nn.MSELoss()
# res_mse = loss_mse(inputs, targets)
# print(res_mse)
#
# # -------------CrossEntropyLoss--------------- #
# x = torch.tensor([0.1, 0.2, 0.3])  # (N,C)
# x = torch.reshape(x, (1, 3))
# y = torch.tensor([1])  # (N)
# loss_cross = nn.CrossEntropyLoss()
# res_cross = loss_cross(x, y)
# print(res_cross)


 

http://www.15wanjia.com/news/43681.html

相关文章:

  • 加盟网站制作免费刷粉网站推广
  • 交通局网站建设整改百度一下官方网址
  • 西安手机网站定制网站建设免费网页制作成品
  • 泉州那家做网站公司好不需要验证码的广告平台
  • 外贸免费平台百度网站排名搜行者seo
  • 广西城乡建设网站搜索推广开户
  • 贵州建设工程招投标协会网站百度推广助手官方下载
  • 网站是什么的集合河南网站推广优化排名
  • 海南今日新闻最新消息深圳优化公司找高粱seo服务
  • 网站营销目标百度惠生活推广怎么收费
  • 简历网站免费东莞做网站排名优化推广
  • 国外做问卷调查的网站百度优化教程
  • 青县网站建设雅虎搜索
  • 可视化拖拽建站系统怎么打广告宣传自己的产品
  • 数据库做网站和做软件有什么不一样宁波seo推荐推广平台
  • 做 理财网站好网络营销推广方式有哪些
  • ps做网站界面徐州百度运营中心
  • 做国外网站汇款用途是什么谷歌关键词
  • 上海平面设计公司排行榜深圳网站优化平台
  • excel如何做超链接网站大数据营销 全网推广
  • windows和linux做网站合肥瑶海区
  • 提供手机网站开发百度站长平台网址
  • 网站被入侵哪里的网络推广培训好
  • 企业网站建设方案费用seo排名点击软件
  • 从哪个网站找钢做的微商百度建站云南服务中心
  • 太仓市质监站网址怎样在百度上做广告推广
  • 一个专业做设计的网站河北seo网络优化师
  • 江西做网站多少钱百度做广告费用
  • 网站制作有名 乐云践新专家网站优化企业排名
  • 网站设计精美案例企业百度推广