当前位置: 首页 > news >正文

推广软件是什么意思网站优化的关键词

推广软件是什么意思,网站优化的关键词,提供网站建设公司电话,wordpress html分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测 目录 分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测效果一览基本介绍研究内容程序设计参考资料 效果一览 基本介绍 Matlab实现基于…

分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测

目录

    • 分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
      • 效果一览
      • 基本介绍
      • 研究内容
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测(Matlab完整程序和数据)
1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。
2.多特征输入模型,直接替换数据就可以用。
3.语言为matlab。分类效果图,混淆矩阵图。
4.分类效果图,混淆矩阵图。
运行环境matlab2018及以上。
经过特征选择后,保留9个特征的序号为:
1 3 5 7 8 9 10 11 12

研究内容

最大互信息系数(Maximum Information Coefficient,MIC)是一种常用的数据特征选择算法,用于发现特征之间的非线性关系。它可以测量两个变量之间的最大相关性。首先,准备一个包含多个特征和目标变量的数据集。对于每对特征和目标变量,计算它们之间的互信息值。互信息度量了两个变量之间的相关性。将计算得到的互信息值进行排序,按照互信息值的大小进行降序排列。从排序后的互信息值列表中选择具有最大互信息系数的特征。可以根据具体需求选择一定数量的特征。最大互信息系数算法的核心思想是找到特征与目标变量之间的最大相关性,因此选择具有最大互信息系数的特征可以被认为是最相关的特征。这种选择方法可以帮助排除那些与目标变量关联较弱的特征,提高模型的性能和效率。在实际应用中,可以结合其他特征选择方法或降维技术来进一步优化特征选择过程。

程序设计

  • 完整程序和数据下载方式(资源处直接下载):Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test ;%%  特征选择
k = 9;        % 保留特征个数
[save_index, mic] = mic_select(p_train, t_train, k);%%  输出选择特征的对应序号
disp('经过特征选择后,保留9个特征的序号为:')
disp(save_index')%%  特征重要性
figure
bar(mic)
xlabel('输入特征序号')
ylabel('最大互信息系数')%%  特征选择后的数据集
p_train = p_train(save_index, :);
p_test  = p_test (save_index, :);%%  输出编码
t_train = ind2vec(t_train);
t_test  = ind2vec(t_test );%%  创建网络
net = newff(p_train, t_train, 5);%%  设置训练参数
net.trainParam.epochs = 1000;  % 最大迭代次数
net.trainParam.goal = 1e-6;    % 误差阈值
net.trainParam.lr = 0.01;      % 学习率%%  训练网络
net = train(net, p_train, t_train);%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'MIC-BP预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'MIC-BP预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

http://www.15wanjia.com/news/36663.html

相关文章:

  • 做网站之前要安装什么广州网站排名推广
  • 淘宝客怎么自己做网站及APP新闻类软文营销案例
  • 网站做缓存seo课程多少钱
  • 企业网站建设管理系统云搜索app
  • 常德网站建设企业厦门seo全网营销
  • 手机网站建设教程视频百度推广代理商返点
  • 代码网站怎么做的怎么知道自己的域名
  • 免费自己建站国外搜索引擎排行榜
  • 做的比较好的设计公司网站广西seo公司
  • 色弱可以做网站开发吗怎样推广自己的商城
  • 宣传策划方案模板网站优化网络推广seo
  • 如何建设好网站制作一个网站步骤
  • 云南网站建设锐网镇江百度seo
  • 网站建设有哪些类型网站google搜索优化
  • 衣服销售网站建设规划书范文广州网站设计建设
  • 上海韵茵网站建设推广手段有哪些
  • 专做淘宝的网站代运营是什么意思
  • 网站开发公司企业官网热搜关键词
  • wordpress列表图显示标题泰州百度关键词优化
  • 网站开发单子alexa排名
  • 公众号登录入口官网电商seo优化
  • 做网站怎么做的网络推广员具体做什么的
  • 哪家网站优化公司好seo优化效果
  • 网站产品预算百度排行榜前十名
  • 公司网站制作申请报告深圳网页搜索排名提升
  • 网站建设开发工具百度的推广方式有哪些
  • 在哪些网站可以做毕业设计seo怎么赚钱
  • 国外做袜靴的网站网络宣传推广方案范文
  • 使用vue做商城网站项目难点免费自助建站
  • 亚购物车功能网站怎么做的网站关键字排名优化