当前位置: 首页 > news >正文

衣服销售网站建设规划书范文广州网站设计建设

衣服销售网站建设规划书范文,广州网站设计建设,网站建好用电脑做服务器,网上购物系统er图梯度提升算法是最常用的集成机器学习技术之一,该模型使用弱决策树序列来构建强学习器。这也是XGBoost和LightGBM模型的理论基础,所以在这篇文章中,我们将从头开始构建一个梯度增强模型并将其可视化。 梯度提升算法介绍 梯度提升算法&#x…

梯度提升算法是最常用的集成机器学习技术之一,该模型使用弱决策树序列来构建强学习器。这也是XGBoost和LightGBM模型的理论基础,所以在这篇文章中,我们将从头开始构建一个梯度增强模型并将其可视化。

梯度提升算法介绍

梯度提升算法(Gradient Boosting)是一种集成学习算法,它通过构建多个弱分类器,然后将它们组合成一个强分类器来提高模型的预测准确率。

梯度提升算法的原理可以分为以下几个步骤:

  1. 初始化模型:一般来说,我们可以使用一个简单的模型(比如说决策树)作为初始的分类器。
  2. 计算损失函数的负梯度:计算出每个样本点在当前模型下的损失函数的负梯度。这相当于是让新的分类器去拟合当前模型下的误差。
  3. 训练新的分类器:用这些负梯度作为目标变量,训练一个新的弱分类器。这个弱分类器可以是任意的分类器,比如说决策树、线性模型等。
  4. 更新模型:将新的分类器加入到原来的模型中,可以用加权平均或者其他方法将它们组合起来。
  5. 重复迭代:重复上述步骤,直到达到预设的迭代次数或者达到预设的准确率。

由于梯度提升算法是一种串行算法,所以它的训练速度可能会比较慢,我们以一个实际的例子来介绍:

假设我们有一个特征集Xi和值Yi,要计算y的最佳估计

我们从y的平均值开始

每一步我们都想让F_m(x)更接近y|x。

在每一步中,我们都想要F_m(x)一个更好的y给定x的近似。

首先,我们定义一个损失函数

然后,我们向损失函数相对于学习者Fm下降最快的方向前进:

因为我们不能为每个x计算y,所以不知道这个梯度的确切值,但是对于训练数据中的每一个x_i,梯度完全等于步骤m的残差:r_i!

所以我们可以用弱回归树h_m来近似梯度函数g_m,对残差进行训练:

然后,我们更新学习器

这就是梯度提升,我们不是使用损失函数相对于当前学习器的真实梯度g_m来更新当前学习器F_{m},而是使用弱回归树h_m来更新它。

也就是重复下面的步骤

1、计算残差:

2、将回归树h_m拟合到训练样本及其残差(x_i, r_i)上

3、用步长\alpha更新模型

看着很复杂对吧,下面我们可视化一下这个过程就会变得非常清晰了

决策过程可视化

这里我们使用sklearn的moons 数据集,因为这是一个经典的非线性分类数据

 import numpy as npimport sklearn.datasets as dsimport pandas as pdimport matplotlib.pyplot as pltimport matplotlib as mplfrom sklearn import treefrom itertools import product,isliceimport seaborn as snsmoonDS = ds.make_moons(200, noise = 0.15, random_state=16)moon = moonDS[0]color = -1*(moonDS[1]*2-1)df =pd.DataFrame(moon, columns = ['x','y'])df['z'] = colordf['f0'] =df.y.mean()df['r0'] = df['z'] - df['f0']df.head(10)

让我们可视化数据:

下图可以看到,该数据集是可以明显的区分出分类的边界的,但是因为他是非线性的,所以使用线性算法进行分类时会遇到很大的困难。

那么我们先编写一个简单的梯度增强模型:

 def makeiteration(i:int):"""Takes the dataframe ith f_i and r_i and approximated r_i from the features, then computes f_i+1 and r_i+1"""clf = tree.DecisionTreeRegressor(max_depth=1)clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}'])df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values)eta = 0.9df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat']df[f'r{i}'] = df['z'] - df[f'f{i}']rmse = (df[f'r{i}']**2).sum()clfs.append(clf)rmses.append(rmse)

上面代码执行3个简单步骤:

将决策树与残差进行拟合:

 clf.fit(X=df[['x','y']].values, y = df[f'r{i-1}'])df[f'r{i-1}hat'] = clf.predict(df[['x','y']].values)

然后,我们将这个近似的梯度与之前的学习器相加:

 df[f'f{i}'] = df[f'f{i-1}'] + eta*df[f'r{i-1}hat']

最后重新计算残差:

 df[f'r{i}'] = df['z'] - df[f'f{i}']

步骤就是这样简单,下面我们来一步一步执行这个过程。

第1次决策

Tree Split for 0 and level 1.563690960407257

第2次决策

Tree Split for 1 and level 0.5143677890300751

第3次决策

Tree Split for 0 and level -0.6523728966712952

第4次决策

Tree Split for 0 and level 0.3370491564273834

第5次决策

Tree Split for 0 and level 0.3370491564273834

第6次决策

Tree Split for 1 and level 0.022058885544538498

第7次决策

Tree Split for 0 and level -0.3030575215816498

第8次决策

Tree Split for 0 and level 0.6119407713413239

第9次决策

可以看到通过9次的计算,基本上已经把上面的分类进行了区分

我们这里的学习器都是非常简单的决策树,只沿着一个特征分裂!但整体模型在每次决策后边的越来越复杂,并且整体误差逐渐减小。

 plt.plot(rmses)

这也就是上图中我们看到的能够正确区分出了大部分的分类

如果你感兴趣可以使用下面代码自行实验:

https://avoid.overfit.cn/post/533a0736b7554ef6b8464a5d8ba964ab

作者:Tanguy Renaudie

http://www.15wanjia.com/news/36646.html

相关文章:

  • 上海韵茵网站建设推广手段有哪些
  • 专做淘宝的网站代运营是什么意思
  • 网站开发公司企业官网热搜关键词
  • wordpress列表图显示标题泰州百度关键词优化
  • 网站开发单子alexa排名
  • 公众号登录入口官网电商seo优化
  • 做网站怎么做的网络推广员具体做什么的
  • 哪家网站优化公司好seo优化效果
  • 网站产品预算百度排行榜前十名
  • 公司网站制作申请报告深圳网页搜索排名提升
  • 网站建设开发工具百度的推广方式有哪些
  • 在哪些网站可以做毕业设计seo怎么赚钱
  • 国外做袜靴的网站网络宣传推广方案范文
  • 使用vue做商城网站项目难点免费自助建站
  • 亚购物车功能网站怎么做的网站关键字排名优化
  • 考试网站怎么做的官网百度
  • 怎样批量做全国网站怎么做网站教程
  • 学校网站建设分工网址收录
  • 福州做网站浏览器老是出现站长工具
  • 济南网站建设哪家好南宁网络推广有几家
  • 网站开发要什么样的环境link友情买卖
  • 动态域名可以做网站吗搜索热词排名
  • 网站开发的经济可行性做个公司网站多少钱
  • 南宁有什么做网站的好公司国内最新新闻消息今天的
  • 安溪网站制作网推接单平台有哪些
  • 周末做兼职上什么网站找东莞网站建设最牛
  • 深圳市盐田区住房建设局网站百度站长平台论坛
  • 重庆建站模板大全武汉百度信息流广告
  • 合肥企业网站建设工seo网页推广
  • 手机必备appseo专业术语