当前位置: 首页 > news >正文

老年门户网站建设的意义今日新闻网

老年门户网站建设的意义,今日新闻网,最新wordpress安装,商务网站建设实训报告文章目录诱导公式单位圆坐标和三角函数记忆口诀符号看象限奇变偶不变例常用诱导公式🎈常用部分(5对)倒数关系六种三角函数间的转换关系小结ReflectionsShifts and periodicity诱导公式 诱导公式 - 维基百科,自由的百科全书 (wikipedia.org) 单位圆坐标…

文章目录

  • 诱导公式
    • 单位圆坐标和三角函数
      • 记忆口诀
        • 符号看象限
        • 奇变偶不变
    • 常用诱导公式🎈
        • 常用部分(5对)
        • 倒数关系
        • 六种三角函数间的转换关系
    • 小结
        • Reflections
        • Shifts and periodicity

诱导公式

  • 诱导公式 - 维基百科,自由的百科全书 (wikipedia.org)

单位圆坐标和三角函数

  • 在这里插入图片描述在这里插入图片描述
    在这里插入图片描述image-20220621152858967
  • 例如,sin(θ+π)=−sin(θ);这里ϕ(θ)=π+θsin(\theta+\pi)=- sin(\theta);这里\phi(\theta)=\pi+\thetasin(θ+π)=sin(θ);这里ϕ(θ)=π+θ

  • 途中各个点的横纵坐标分值分别对应p(cox(ϕ(θ)),sin(ϕ(θ)))途中各个点的横纵坐标分值分别对应p(cox(\phi(\theta)),sin(\phi(\theta)))途中各个点的横纵坐标分值分别对应p(cox(ϕ(θ)),sin(ϕ(θ)))

  • 途中设定了两个超级点(主超级点为A(cosθ,sinθ),副超级点B(sinθ,cosθ)A(cos\theta,sin\theta),副超级点B(sin\theta,cos\theta)A(cosθ,sinθ),副超级点B(sinθ,cosθ)

    • 所有的其他角度都可以由超级点关于x轴或者y轴或者圆心原点(或者θ=π2)对称所有的其他角度都可以由超级点关于x轴或者y轴或者圆心原点(或者\theta=\frac{\pi}{2})对称所有的其他角度都可以由超级点关于x轴或者y轴或者圆心原点(或者θ=2π)对称
    • 比如ϕ(θ)=θ−π2;则sin(ϕ(θ))=−cosθ;cos(ϕ(θ))=sinθ\phi(\theta)=\theta-\frac{\pi}{2};则sin(\phi(\theta))=-cos\theta;cos(\phi(\theta))=sin\thetaϕ(θ)=θ2π;sin(ϕ(θ))=cosθ;cos(ϕ(θ))=sinθ

记忆口诀

  • 对于kπ2±α(k∈Z)k\frac{\pi}{2}\pm\alpha(k\in \mathbb{Z})k2π±α(kZ)的三角函数值,

符号看象限

  • 口诀总是把α\alphaα看作锐角,2π−α∈(270°,360°),弧度角2π−α终边落在第4象限,sin(2π−α)<02π-α∈(270°,360°),弧度角2\pi-\alpha终边落在第4象限,sin(2π-α)<02πα(270°360°),弧度角2πα终边落在第4象限,sin(2πα)<0,符号为“-”

奇变偶不变

  • 当k是偶数时,得到α的同名函数值,即函数名不改变;

  • 当k是奇数时,得到α相应的余函数值,即

    • sin→cos;cos→sin;tan→cot,cot→tan
  • 然后在前面加上把α看成锐角时原函数值的符号

  • 对于tan⁡,sec⁡,csc⁡,cot⁡\tan,\sec,\csc,\cottan,sec,csc,cot可以转化为cos⁡,sin⁡\cos,\sincos,sin处理

  • sin(2π−α)=sin(4⋅π2−α)sin(2π-α)=sin(4·\frac{\pi}{2}-α)sin(2πα)=sin(42πα),k=4为偶数,所以函数名(绝对值部分)是sin⁡α\sin\alphasinα
  • 所以sin(2π−α)=−sinαsin(2π-α)=-sinαsin(2πα)=sinα

常用诱导公式🎈

常用部分(5对)

  • sin⁡(−α)=−sin⁡α\sin(-\alpha)=-\sin{\alpha}sin(α)=sinα

  • cos⁡(−α)=cos⁡α\cos(-\alpha)=\cos{\alpha}cos(α)=cosα

  • sin⁡(π2−α)=cos⁡α\sin(\frac{\pi}{2}-\alpha)=\cos{\alpha}sin(2πα)=cosα

  • cos⁡(π2−α)=sin⁡α\cos(\frac{\pi}{2}-\alpha)=\sin{\alpha}cos(2πα)=sinα

  • sin⁡(π2+α)=cos⁡α\sin(\frac{\pi}{2}+\alpha)=\cos{\alpha}sin(2π+α)=cosα

  • cos⁡(π2+α)=−sin⁡α\cos(\frac{\pi}{2}+\alpha)=-\sin{\alpha}cos(2π+α)=sinα

  • sin⁡(π−α)=sin⁡α\sin{(\pi-\alpha)}=\sin{\alpha}sin(πα)=sinα

  • cos⁡(π−α)=−cos⁡α\cos{(\pi-\alpha)}=-\cos{\alpha}cos(πα)=cosα

  • sin⁡(π+α)=−sin⁡α\sin(\pi+\alpha)=-\sin{\alpha}sin(π+α)=sinα

  • cos⁡(π+α)=−cos⁡α\cos{(\pi+\alpha)}=-\cos{\alpha}cos(π+α)=cosα

  • 总之,第一象限全是正的,第三象限全是负的

倒数关系

正弦(sine)×余割(co−secant)=1正割(secant)×余弦(co−sine)=1正切(tangent)×余切(co−tangent)=1正弦(sine)\times余割(co-secant)=1 \\正割(secant)\times余弦(co-sine)=1 \\ 正切(tangent)\times余切(co-tangent)=1 正弦(sine)×余割(cosecant)=1正割(secant)×余弦(cosine)=1正切(tangent)×余切(cotangent)=1

tan·gentco·tan·gentse·cantco·se·cant
/ˈtanjənt//kōˈtanjənt//ˈsēˌkant,ˈsēˌkənt//kōˈsēkənt/
正切余切正割余割

六种三角函数间的转换关系

  • 正弦余弦&正割余割&正切余切间的转换(π2\frac{\pi}{2}2π)
    image-20220617203146092

小结

  • π2−α\frac{\pi}{2}-\alpha2πα:关于y=xy=xy=x对称

  • 关于y=xy=xy=x对称的两点P1=(x1,y1),P2=(x2,y2)P_1=(x_1,y_1),P2=(x_2,y_2)P1=(x1,y1),P2=(x2,y2)坐标关系:

    • x1=y2x_1=y_2x1=y2
    • x2=y1x_2=y_1x2=y1

Reflections

  • 在这里插入图片描述

Shifts and periodicity

image-20220621130245743

http://www.15wanjia.com/news/35486.html

相关文章:

  • 外贸型网站免费推广有哪些
  • 武汉专业网站建设域名注册需要多少钱?
  • 独立网站优化广告网站快速有排名
  • 在大网站做网页广告需要多少钱如何做网站营销
  • 桂林旅游网站制作公司动态网站的制作与设计
  • asp网站怎么做404页面跳转seo优化一般包括哪些
  • 陕西网站建设推广公司做个网站
  • 域名申请到网站建设教程南宁网站建设公司
  • 乌克兰设计网站建设百度接单平台
  • 深圳燃气公司招聘新乡搜索引擎优化
  • 网站建设营销话术职业技能培训学校
  • 青海网站建设设计南通关键词优化平台
  • 网站设计公司南京我要推广网
  • 平度网站建设google中文搜索引擎
  • 江苏seo推广网站建设产品全网营销推广
  • 网站设计需要那些模块网站seo关键词
  • 用什么开发和建设网站最好网络营销服务企业有哪些
  • 让医院做网站的策划书百度163黄页关键词挖掘
  • 网站源码html百度网盘电脑版登录入口
  • 摄影网站建设开题报告百度指数搜索指数的数据来源
  • 口碑好的丹徒网站建设网站推广优化外链
  • 邯郸网站建设福州百度网站快速优化
  • 怀化老年网站搜索引擎网络推广方法
  • 网站的建设时间怎么查seo专员是干什么的
  • 宝安网页设计天津seo培训
  • 建设部招投标网站工业设计公司
  • 东莞有哪些做网站百度推广客户端怎样注册
  • 用jsp做的网站能搜任何网站的浏览器
  • 深圳专业网站建设价格济宁百度推广公司有几家
  • 网站可以做库存吗产品网络推广