当前位置: 首页 > news >正文

网站开发软件开发项目专业营销团队外包公司

网站开发软件开发项目,专业营销团队外包公司,嘉兴cms模板建站,合肥网站建设-中国互联1、按条件筛选(与,或,非) 为数据筛选,使用与,或,非三个条件配合大于,小于和等于对数据进行筛选,并进行计数和求和。与 excel 中的筛选功能和 countifs 和 sumifs 功能相似…

1、按条件筛选(与,或,非)
为数据筛选,使用与,或,非三个条件配合大于,小于和等于对数据进行筛选,并进行计数和求和。与 excel 中的筛选功能和 countifs 和 sumifs 功能相似。
Excel 数据目录下提供了“筛选”功能,用于对数据表按不同的条件进行筛选。Python 中使用 loc 函数配合筛选条件来完成筛选功能。配合 sum 和 count 函数还能实现 excel 中 sumif 和 countif 函数的功能。

1)使用“与”条件进行筛选
条件是年龄大于 25 岁,并且城市为 beijing。筛选后只有一条数据符合要求。
1#使用“与”条件进行筛选
2df_inner.loc[(df_inner[‘age’] > 25) & (df_inner[‘city’] == ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]]

2)使用“或”条件进行筛选
年龄大于 25 岁或城市为 beijing。筛选后有 6 条数据符合要求。
1#使用“或”条件筛选
2df_inner.loc[(df_inner[‘age’] > 25) | (df_inner[‘city’] == ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort
3([‘age’])

3)求和
在前面的代码后增加 price 字段以及 sum 函数,按筛选后的结果将 price 字段值进行求和,相当于 excel 中 sumifs 的功能。
1 #对筛选后的数据按 price 字段进行求和
2 df_inner.loc[(df_inner[‘age’] > 25) | (df_inner[‘city’] == ‘beijing’),
3 [‘id’,‘city’,‘age’,‘category’,‘gender’,‘price’]].sort([‘age’]).price.sum()

4)使用“非”条件进行筛选
城市不等于 beijing。符合条件的数据有 4 条。将筛选结果按 id 列进行排序。
1#使用“非”条件进行筛选
2df_inner.loc[(df_inner[‘city’]
!= ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort([‘id’])

在前面的代码后面增加 city 列,并使用 count 函数进行计数。相当于 excel 中的 countifs 函数的功能。
1#对筛选后的数据按 city 列进行计数
2df_inner.loc[(df_inner[‘city’]
!= ‘beijing’), [‘id’,‘city’,‘age’,‘category’,‘gender’]].sort([‘id’]).city.count()

还有一种筛选的方式是用 query 函数。下面是具体的代码和筛选结果。
1#使用 query 函数进行筛选
2df_inner.query(‘city == [‘beijing’, ‘shanghai’]’)

在前面的代码后增加 price 字段和 sum 函数。对筛选后的 price 字段进行求和,相当于 excel 中的 sumifs 函数的功能。
1 #对筛选后的结果按 price 进行求和
2 df_inner.query(‘city == [‘beijing’, ‘shanghai’]’).price.sum()
3 12230

2、数据汇总
接下来是对数据进行分类汇总,Excel 中使用分类汇总和数据透视可以按特定维度对数据进行汇总,python 中使用的主要函数是 groupby 和 pivot_table。下面分别介绍这两个函数的使用方法。

1)分类汇总
Excel 的数据目录下提供了“分类汇总”功能,可以按指定的字段和汇总方式对数据表进行汇总。Python 中通过 Groupby 函数完成相应的操作,并可以支持多级分类汇总。
Groupby 是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,groupby 按列名称出现的顺序进行分组。同时要制定分组后的汇总方式,常见的是计数和求和两种。
1 #对所有列进行计数汇总
2 df_inner.groupby(‘city’).count()

可以在 groupby 中设置列名称来对特定的列进行汇总。下面的代码中按城市对 id 字段进行汇总计数。
1 #对特定的 ID 列进行计数汇总
2 df_inner.groupby(‘city’)[‘id’].count()
3 city
4 beijing 2
5 guangzhou 1
6 shanghai 2
7 shenzhen 1
8 Name: id, dtype: int64

在前面的基础上增加第二个列名称,分布对 city 和 size 两个字段进行计数汇总。
1 #对两个字段进行汇总计数
2 df_inner.groupby([‘city’,‘size’])[‘id’].count()
3 city size
4 beijing A 1
5 F 1
6 guangzhou A 1
7 shanghai A 1
8 B 1
9 shenzhen C 1
10 Name: id, dtype: int64

除了计数和求和外,还可以对汇总后的数据同时按多个维度进行计算,下面的代码中按城市对 price 字段进行汇总,并分别计算 price 的数量,总金额和平均金额。
1 #对 city 字段进行汇总并计算 price 的合计和均值。
2 df_inner.groupby(‘city’)[‘price’].agg([len,np.sum, np.mean])

2)数据透视
Excel 中的插入目录下提供“数据透视表”功能对数据表按特定维度进行汇总。Python 中也提供了数据透视表功能。通过 pivot_table 函数实现同样的效果。
数据透视表也是常用的一种数据分类汇总方式,并且功能上比 groupby 要强大一些。下面的代码中设定 city 为行字段,size 为列字段,price 为值字段。分别计算 price 的数量和金额并且按行与列进行汇总。
1 #数据透视表
2pd.pivot_table(df_inner,index=[‘city’],values=[‘price’],columns=[‘size’],aggfunc=[len,np.sum],fill_value=0,margins=True)

文章来源:网络 版权归原作者所有
上文内容不用于商业目的,如涉及知识产权问题,请权利人联系小编,我们将立即处理

http://www.15wanjia.com/news/25379.html

相关文章:

  • 宁波市网站集约化建设通知网站推广计划方法
  • 最新楼盘价格走势图大连seo优化
  • 上海专业网站建设公司今日新闻 最新消息 大事
  • 怎么为做的网站配置域名深圳网络推广公司哪家好
  • 大连华南网站制作公司站长工具seo查询
  • 常州网站关键词优化软件广告软文怎么写
  • 常用网站布局免费网站在线客服系统源码
  • 公司宣传片制作公司广东网站营销seo费用
  • 淮南市城乡建设局网站网络营销企业有哪些公司
  • 如何办宽带张家界seo
  • 软文推广特点淘宝seo搜索优化
  • 网站qq代码seo关键词排名优化价格
  • 济宁建站公司网站怎么进入
  • 如何在网站上做404页面成都网站推广
  • 衡水做企业网站中央新闻
  • 哪个网站是专门做招商的平台长春做网站推广的公司
  • 网络维护公司怎么发展郑州seo排名扣费
  • 做织带的网站厦门seo外包
  • 广州 环保 凡人网站建设网络营销五种方法
  • 好的宝安网站建设长沙网站开发
  • p图做网站兼职网站友链
  • 如何策划电子商务的网站建设百度推广助手客户端
  • wordpress文章添加链接seo包年优化费用
  • 哪些网站图片做海报好宁波seo怎么做引流推广
  • 做的比较好的二手交易网站有哪些疫情最新数据
  • 淮安做网站app行业网络营销
  • wordpress 隐藏菜单真人seo点击平台
  • 网站推广产品世界羽联巡回赛总决赛
  • 重庆网站建设公司有哪些好推建站
  • 用dw如何做网站外包公司软件开发