当前位置: 首页 > news >正文

网站系统功能描述网站seo基本流程

网站系统功能描述,网站seo基本流程,网站建设哪家强,医院网站设计与实现目录 1 参数初始化2 Xavier参数初始化原理2.1 前向传播阶段2.2 反向传播阶段2.3 可视化思考 3 Python实现 1 参数初始化 参数初始化在深度学习中起着重要的作用。在神经网络中,参数初始化是指为模型中的权重和偏置项设置初始值的过程。合适的参数初始化可以帮助模型…

目录

  • 1 参数初始化
  • 2 Xavier参数初始化原理
    • 2.1 前向传播阶段
    • 2.2 反向传播阶段
    • 2.3 可视化思考
  • 3 Python实现

1 参数初始化

参数初始化在深度学习中起着重要的作用。在神经网络中,参数初始化是指为模型中的权重和偏置项设置初始值的过程。合适的参数初始化可以帮助模型更好地学习和收敛到最优解。参数初始化的目标是使模型具有良好的初始状态,以便在训练过程中快速且稳定地收敛。错误的参数初始化可能导致模型无法正常学习,梯度消失或梯度爆炸等问题。

常见的参数初始化方法包括随机初始化、零初始化、正态分布初始化和均匀分布初始化等。这些方法根据不同的分布特性和模型结构选择合适的初始值。在某些情况下,不同层或不同类型的参数可能需要不同的初始化策略。例如使用预训练模型时,可以采用迁移学习的方法,将预训练模型的参数作为初始值,从而加速收敛并提高性能。

除了设置初始值外,参数初始化还可以与其他优化技术相结合,如学习率调整、正则化和批归一化等,以进一步提高模型的性能和稳定性

举例而言,如图所示是在 t a n h ( ⋅ ) \rm{tanh(\cdot)} tanh()下九层神经网络各层激活输出,可以看到在网络深层激活输出逐渐衰减或保持不变

在这里插入图片描述

2 Xavier参数初始化原理

Xavier初始化的核心原理是保证各层网络的前向传播激活值和反向传播梯度值方差保持一致。Xavier初始化基于如下假设:

  • 输入样本独立同分布采样,且各个特征维度方差相等;
  • 激活函数 σ ( ⋅ ) \sigma \left( \cdot \right) σ()对称且近似线性区间满足 σ ( z ) ≈ z ⇔ σ ′ ( z ) ≈ 1 \sigma \left( \boldsymbol{z} \right) \approx \boldsymbol{z}\Leftrightarrow \sigma '\left( \boldsymbol{z} \right) \approx 1 σ(z)zσ(z)1
  • 激活输入 z \boldsymbol{z} z处于激活函数的线性区间

2.1 前向传播阶段

根据

a l = σ ( z l ) = σ ( W l a l − 1 − b l ) \boldsymbol{a}^l=\sigma \left( \boldsymbol{z}^l \right) =\sigma \left( \boldsymbol{W}^l\boldsymbol{a}^{l-1}-\boldsymbol{b}^l \right) al=σ(zl)=σ(Wlal1bl)

可得

v a r [ a l ] ≈ v a r [ z l ] = v a r [ W l a l − 1 − b l ] \mathrm{var}\left[ \boldsymbol{a}^l \right] \approx \mathrm{var}\left[ \boldsymbol{z}^l \right] =\mathrm{var}\left[ \boldsymbol{W}^l\boldsymbol{a}^{l-1}-\boldsymbol{b}^l \right] var[al]var[zl]=var[Wlal1bl]

初始阶段第 l l l层的网络权重 W l \boldsymbol{W}^l Wl的各个元素独立采样自某个分布 P P P,即

[ z 1 l z 2 l ⋮ z n l l ] = [ w 1 , 1 l w 1 , 2 l ⋯ w 1 , n l − 1 l w 2 , 1 l w 2 , 2 l ⋯ w 2 , n l − 1 l ⋮ ⋮ ⋱ ⋮ w n l , 1 l w n l , 2 l ⋯ w n l , n l − 1 l ] [ a 1 l − 1 a 2 l − 1 ⋮ a n l − 1 l − 1 ] ⇒ v a r [ z i l ] = v a r [ ∑ k = 1 n l − 1 w 1 , k l a k l − 1 ] \left[ \begin{array}{c} z_{1}^{l}\\ z_{2}^{l}\\ \vdots\\ z_{n_l}^{l}\\\end{array} \right] =\left[ \begin{matrix} w_{1,1}^{l}& w_{1,2}^{l}& \cdots& w_{1,n_{l-1}}^{l}\\ w_{2,1}^{l}& w_{2,2}^{l}& \cdots& w_{2,n_{l-1}}^{l}\\ \vdots& \vdots& \ddots& \vdots\\ w_{n_l,1}^{l}& w_{n_l,2}^{l}& \cdots& w_{n_l,n_{l-1}}^{l}\\\end{matrix} \right] \left[ \begin{array}{c} a_{1}^{l-1}\\ a_{2}^{l-1}\\ \vdots\\ a_{n_{l-1}}^{l-1}\\\end{array} \right] \Rightarrow \mathrm{var}\left[ z_{i}^{l} \right] =\mathrm{var}\left[ \sum_{k=1}^{n_{l-1}}{w_{1,k}^{l}a_{k}^{l-1}} \right] z1lz2lznll = w1,1lw2,1lwnl,1lw1,2lw2,2lwnl,2lw1,nl1lw2,nl1lwnl,nl1l a1l1a2l1anl1l1 var[zil]=var[k=1nl1w1,klakl1]

考虑到 w i , j l w_{i,j}^{l} wi,jl与前一层激活值 a l − 1 \boldsymbol{a}^{l-1} al1独立,所以

v a r [ z i l ] = v a r [ ∑ k = 1 n l − 1 w i , k l a k l − 1 ] = ∑ k = 1 n l − 1 v a r [ w i , k l a k l − 1 ] = ∑ k = 1 n l − 1 ( v a r [ w i , k l ] v a r [ a k l − 1 ] + v a r [ w i , k l ] E 2 [ a k l − 1 ] + v a r [ a k l − 1 ] E 2 [ w i , k l ] ) \begin{aligned}\mathrm{var}\left[ z_{i}^{l} \right] &=\mathrm{var}\left[ \sum_{k=1}^{n_{l-1}}{w_{i,k}^{l}a_{k}^{l-1}} \right]\\& =\sum_{k=1}^{n_{l-1}}{\mathrm{var}\left[ w_{i,k}^{l}a_{k}^{l-1} \right]}\\&=\sum_{k=1}^{n_{l-1}}{\left( \mathrm{var}\left[ w_{i,k}^{l} \right] \mathrm{var}\left[ a_{k}^{l-1} \right] +\mathrm{var}\left[ w_{i,k}^{l} \right] \mathbb{E} ^2\left[ a_{k}^{l-1} \right] +\mathrm{var}\left[ a_{k}^{l-1} \right] \mathbb{E} ^2\left[ w_{i,k}^{l} \right] \right)}\end{aligned} var[zil]=var[k=1nl1wi,klakl1]=k=1nl1var[wi,klakl1]=k=1nl1(var[wi,kl]var[akl1]+var[wi,kl]E2[akl1]+var[akl1]E2[wi,kl])

根据激活函数对称性,可令 W l \boldsymbol{W}^l Wl a l − 1 \boldsymbol{a}^{l-1} al1均值为0,根据假设中的方差关系

{ ∀ i v a r [ a i l ] = v a r [ a l ] ∀ i , j v a r [ w i , j l ] = v a r [ W l ] \begin{cases} \forall i\,\,\mathrm{var}\left[ a_{i}^{l} \right] =\mathrm{var}\left[ \boldsymbol{a}^l \right]\\ \forall i,j\,\,\mathrm{var}\left[ w_{i,j}^{l} \right] =\mathrm{var}\left[ \boldsymbol{W}^l \right]\\\end{cases} {ivar[ail]=var[al]i,jvar[wi,jl]=var[Wl]

上式可简化为 v a r [ z i l ] = n l − 1 v a r [ w i , 1 l ] v a r [ a 1 l − 1 ] \mathrm{var}\left[ z_{i}^{l} \right] =n_{l-1}\mathrm{var}\left[ w_{i,1}^{l} \right] \mathrm{var}\left[ a_{1}^{l-1} \right] var[zil]=nl1var[wi,1l]var[a1l1],改写成矩阵形式

v a r [ a l ] ≈ n l − 1 v a r [ W l ] v a r [ a l − 1 ] \mathrm{var}\left[ \boldsymbol{a}^l \right] \approx n_{l-1}\mathrm{var}\left[ \boldsymbol{W}^l \right] \mathrm{var}\left[ \boldsymbol{a}^{l-1} \right] var[al]nl1var[Wl]var[al1]

结合 a 0 = x \boldsymbol{a}^0=\boldsymbol{x} a0=x可递推得到

v a r [ a l ] ≈ v a r [ x ] ∏ k = 1 l n k − 1 v a r [ W k ] {\mathrm{var}\left[ \boldsymbol{a}^l \right] \approx \mathrm{var}\left[ \boldsymbol{x} \right] \prod_{k=1}^l{n_{k-1}\mathrm{var}\left[ \boldsymbol{W}^k \right]}} var[al]var[x]k=1lnk1var[Wk]

2.2 反向传播阶段

根据 δ l = ( W l + 1 ) T δ l + 1 ⊙ σ ′ ( z l ) \boldsymbol{\delta }^l=\left( \boldsymbol{W}^{l+1} \right) ^T\boldsymbol{\delta }^{l+1}\odot \sigma '\left( \boldsymbol{z}^l \right) δl=(Wl+1)Tδl+1σ(zl)可得

v a r [ δ l ] ≈ n l + 1 v a r [ W l + 1 ] v a r [ δ l + 1 ] \mathrm{var}\left[ \boldsymbol{\delta }^l \right] \approx n_{l+1}\mathrm{var}\left[ \boldsymbol{W}^{l+1} \right] \mathrm{var}\left[ \boldsymbol{\delta }^{l+1} \right] var[δl]nl+1var[Wl+1]var[δl+1]

结合 δ L = ∇ y ~ E ⊙ σ ′ ( z L ) ≈ ∇ y ~ E \boldsymbol{\delta }^L=\nabla _{\boldsymbol{\tilde{y}}}E\odot \sigma '\left( \boldsymbol{z}^L \right) \approx \nabla _{\boldsymbol{\tilde{y}}}E δL=y~Eσ(zL)y~E可递推得到

v a r [ δ l ] ≈ ∇ y ~ E ∏ k = l + 1 L n k v a r [ W k ] {\mathrm{var}\left[ \boldsymbol{\delta }^l \right] \approx \nabla _{\boldsymbol{\tilde{y}}}E\prod_{k=l+1}^L{n_k\mathrm{var}\left[ \boldsymbol{W}^k \right]}} var[δl]y~Ek=l+1Lnkvar[Wk]

为保证前向传播激活和反向传播梯度在网络中顺利流动,应保持各层参数方差相等,即满足

{ n l v a r [ W l ] = 1 n l − 1 v a r [ W l ] = 1 \begin{cases} n_l\mathrm{var}\left[ \boldsymbol{W}^l \right] =1\\ n_{l-1}\mathrm{var}\left[ \boldsymbol{W}^l \right] =1\\\end{cases} nlvar[Wl]=1nl1var[Wl]=1

由于第 l l l层的输入神经元个数 n l − 1 n_{l-1} nl1和输出神经元个数 n l n_l nl一般不相等,故取折中

v a r [ W l ] = 2 n l − 1 + n l \mathrm{var}\left[ \boldsymbol{W}^l \right] =\frac{2}{n_{l-1}+n_l} var[Wl]=nl1+nl2

所以网络连接权采样自服从方差满足上式的分布即可,例如

W ∼ N ( 0 , 2 n l − 1 + n l ) o r W ∼ U ( − 6 n l − 1 + n l , 6 n l − 1 + n l ) \boldsymbol{W}\sim \mathcal{N} \left( 0,\frac{2}{n_{l-1}+n_l} \right) \,\, \mathrm{or} \boldsymbol{W}\sim U\left( -\sqrt{\frac{6}{n_{l-1}+n_l}},\sqrt{\frac{6}{n_{l-1}+n_l}} \right) WN(0,nl1+nl2)orWU(nl1+nl6 ,nl1+nl6 )

2.3 可视化思考

如图所示,经过Xavier初始化后网络各层前向和反向传播时的方差保持一致

在这里插入图片描述

如图所示,经过Xavier初始化后的测试误差通常更小

在这里插入图片描述

Xavier进一步指出:观察层与层之间传播的激活值和梯度有利于理解深层网络的训练复杂度;保持层与层之间激活值和梯度的良好流动对学习效果非常重要。尽管在Xavier初始化做出了比较苛刻的假设,且在工程上很容易被违反,但其在实践中被证明是有效的,已经成为很多深度学习框架的默认初始化方法之一。

3 Python实现

简单实现一下Xavier初始化

def initialize_parameters_xavier(layers_dims):parameters = {}L = len(layers_dims)for l in range(1, L):mu = 0sigma = np.sqrt(2.0 / (layers_dims[l - 1] + layers_dims[l]))parameters['W' + str(l)] = np.random.normal(loc=mu, scale=sigma, size=(layers_dims[l], layers_dims[l - 1]))parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))return parameters

可视化

for l in range(1, num_layers):A_pre = AW = parameters['W' + str(l)]b = parameters['b' + str(l)]z = np.dot(W, A_pre) + b # z = Wx + bA = tanh(z)print(A)plt.subplot(1, 8, l)plt.hist(A.flatten(), facecolor='g')plt.xlim([-2, 2])plt.ylim([0, 1000000])plt.yticks([])
plt.show()

如下所示
在这里插入图片描述
可以看出各层输出方差基本一致,实现了良好的初始化效果

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇
http://www.15wanjia.com/news/19077.html

相关文章:

  • wordpress 前台上传图片google搜索优化方法
  • 做影视网站侵权吗百度快速收录提交工具
  • 高端企业网站建设流程南昌seo公司
  • 企业宣传册模板百度云seo推广优化
  • wordpress免费插件下载地址安庆seo
  • b2b网站产品群发工具优化大师下载
  • wordpress主题添加目录温州seo顾问
  • 今天出入深圳最新规定seo专员的工作内容
  • 给一个免费的网站省好多会员app
  • 毕业设计微信小程序开发进一步优化落实
  • 北京大兴专业网站建设公司北京最新疫情情况
  • 做网站专用软件巨量引擎广告投放平台官网
  • 支付网站服务费怎么做分录电商网站建设
  • 有什么网站可以做设计赚钱聚合搜索引擎
  • 有做任务赚钱的网站有哪些网站seo需要用到哪些工具
  • 快速建站模板自助建站网站网页设计
  • 网站开发的相关语言有哪些seo优化首页
  • 清远建设网站制作单页面网站如何优化
  • 兼职做网站在那里接任务厦门seo网站管理
  • 公司做网站app入什么科目天津百度网站快速排名
  • 有后台的网站怎么做百度热度榜搜索趋势
  • 电销管理系统哪个好用seo咨询服务价格
  • 什么样的公司专业做网站的官网seo是什么意思
  • 做网站被捉优化营商环境发言稿
  • 网站排名恢复域名ip查询
  • 淘宝接单做网站重庆seo管理平台
  • 晋江哪里可以学建设网站遵义网站seo
  • 学做网站如何创业北京网站推广公司
  • 国外游戏ui设计网站网站建设主要推广方式
  • 设计比较好的电商网站友情链接平台赚钱吗