当前位置: 首页 > news >正文

网页设计和网站开发的区别seo主要做哪些工作

网页设计和网站开发的区别,seo主要做哪些工作,百度seo推广计划类型包括,哪个网站做兼职猎头timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。 使用timm库创建模型时,如何确定模型的名字 使用…

timm(Torch Image Models)是一个在PyTorch上构建的图像模型库,它提供了一系列预训练的深度学习模型,使得研究人员和开发者可以方便地进行图像分类、目标检测等任务。
在这里插入图片描述

使用timm库创建模型时,如何确定模型的名字

使用timm.list_models方法,找到timm支持的模型

import timmif __name__ == '__main__':all_pretrained_models_available = timm.list_models(pretrained=True)print(all_pretrained_models_available)for i in all_pretrained_models_available:print(i)

运行结果:
很多,这里只列出一部分啊!

resnet152
resnet152d
resnet200d
resnetblur50
resnetrs50
resnetrs101
resnetrs152
resnetrs200
resnetrs270
resnetrs350
resnetrs420
resnetv2_50
resnetv2_50x1_bit_distilled
resnetv2_50x1_bitm
resnetv2_50x1_bitm_in21k
resnetv2_50x3_bitm
resnetv2_50x3_bitm_in21k
resnetv2_101
resnetv2_101x1_bitm
resnetv2_101x1_bitm_in21k
resnetv2_101x3_bitm
resnetv2_101x3_bitm_in21k
resnetv2_152x2_bit_teacher
resnetv2_152x2_bit_teacher_384
resnetv2_152x2_bitm
resnetv2_152x2_bitm_in21k
resnetv2_152x4_bitm
resnetv2_152x4_bitm_in21k
resnext26ts

创建模型

执行代码

self.model = timm.create_model('resnetv2_50', pretrained, num_classes=12, global_pool="avg")

加载预训练权重

timm模型加载预训练权重,均改为从huggingface自动下载。由于众所周知的原因,我们不能下载。我们可以选择加载其他版本的预训练权重。代码:

model_path = '/Users/admin/Downloads/pytorch_model.bin'  # 替换为你的pytorch_model.bin文件路径# 加载模型权重
state_dict = torch.load(model_path, map_location=torch.device('cpu'))# 创建模型实例并加载权重
model = timm.create_model("eva_giant_patch14_336.clip_ft_in1k", pretrained=False)
model.load_state_dict(state_dict)# 修改输出类别数
model.reset_classifier(num_classes)  

特征提取

使用timm库进行特征提取是一个常见的任务,尤其是在处理图像数据时。timm(Torch Image Models)是一个基于PyTorch的库,它包含了一系列预训练的深度学习模型,这些模型可以很方便地用于特征提取、迁移学习等任务。

以下是一个使用timm进行特征提取的基本示例:

首先,确保你已经安装了timm库:

pip install timm

然后,你可以使用以下Python代码进行特征提取:

import torch
from timm import create_model, list_models
from torchvision import transforms
from PIL import Image# 选择一个预训练模型
model_name = 'resnet50'
pretrained_model = create_model(model_name, pretrained=True)# 切换到评估模式,关闭dropout和batch normalization层
pretrained_model.eval()# 定义预处理变换
transform = transforms.Compose([transforms.Resize(224),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])# 加载图像
image_path = 'path_to_your_image.jpg'
image = Image.open(image_path).convert('RGB')# 应用预处理变换
image_tensor = transform(image).unsqueeze(0)  # 添加batch维度# 如果有GPU,将图像和数据模型转移到GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_tensor = image_tensor.to(device)
pretrained_model = pretrained_model.to(device)# 提取特征
with torch.no_grad():  # 不需要计算梯度,节省内存和计算资源features = pretrained_model.forward_features(image_tensor)  # 获取特征# 将特征转移到CPU(如果需要)并展平
features = features.cpu().numpy().flatten()print(features)

在这个例子中,我们首先创建了一个预训练的ResNet-50模型。然后,我们将模型设置为评估模式,并定义了一个预处理变换,该变换将图像缩放到256x256,中心裁剪到224x224,转换为张量,并应用归一化。

接下来,我们加载了一张图像,并应用预处理变换。然后,我们检查是否有可用的GPU,并将图像张量和模型转移到相应的设备上。

最后,我们使用forward_features方法(这是timm库特有的,用于直接获取模型的卷积层输出,而不包括全连接层)来提取图像的特征。提取的特征被转移到CPU上,并展平为一个一维数组。

注意:不同的模型可能有不同的方法来获取特征。例如,一些模型可能没有forward_features方法,而是需要你手动选择特定的层来获取特征。在这种情况下,你需要查阅该模型的文档或源代码来了解如何正确提取特征。

http://www.15wanjia.com/news/179427.html

相关文章:

  • 做网站的背景照东莞龙舟制作技艺
  • txt怎么做网站在易语言里面做网站
  • 做毕设好的网站网站游戏案例
  • 只做水果的网站济宁做网站有哪几家
  • 手机网站有什么不同网站开发多线程开发
  • 免费永久个人网站在原备案号下增加新网站
  • 多语言网站怎么实现的福州网络公司
  • 网站自适应是什么做的小游戏网站怎么做
  • 没有网站做淘宝客广告设计制作公司网站
  • 木渎网站建设北京建设集团招聘信息网站
  • 企业网站每个月流量费舞曲网站建设
  • 360检测网站开发语言的工具简单风景网站模版
  • 玉泉路网站制作附近的网站设计开发
  • 建设一个简单的网站广告优化师招聘
  • 深圳seo网站优化国家职业资格证书查询
  • 龙岩做网站开发多久时间在线制作图片上添加盖章带数字的
  • 连云港高端网站建设怎么制作页面视频
  • 芜湖做网站网络架构方案规划设计和实施
  • 网站设计模板含数据库本地做网站图片怎么存
  • 网站由哪些部分组成部分组成溧阳住房和城乡建设局网站
  • 肥西县住房和城乡建设局网站企业做网站
  • 广州网站制作(信科网络)wordpress购物网站手机
  • 公司的网站建设费用怎么入账十堰seo优化
  • 黑山网站制作公司wordpress主题翻译
  • 济南建站公司模板软件网站开发合同
  • 钓鱼网站实施过程城乡建设网站证件查询
  • 动画视频模板网站多用户分销系统开发
  • 网站开发后台软件建设微商城网站
  • 做网站框架需要什么软件郴州网络
  • 镇江网站优化公司如何为企业进行营销策划