当前位置: 首页 > news >正文

建设购物网站的目的微信营销是什么

建设购物网站的目的,微信营销是什么,找大学生做网站要多少钱,临沂市建设职工中等专业学校校长本篇主要介绍几种其他较常用的模型解释性方法。 1. Permutation Feature Importance(PFI) 1.1 算法原理 置换特征重要性(Permutation Feature Importance)的概念很简单,其衡量特征重要性的方法如下:计算特征改变后模型预测误差的增加。如果打乱该特征的…

  本篇主要介绍几种其他较常用的模型解释性方法。

1. Permutation Feature Importance(PFI)

1.1 算法原理

  置换特征重要性(Permutation Feature Importance)的概念很简单,其衡量特征重要性的方法如下:计算特征改变后模型预测误差的增加。如果打乱该特征的值增加了模型的误差,那么一个特征就是重要的;如果打乱之后模型误差不变,那就认为该特征不重要。

1.2 Python实现

  使用Wine酒数据来训练模型。其模型训练代码如下:

import pandas as pd
import numpy as np
from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot as plt
import seaborn as snswine=load_wine()
X=pd.DataFrame(wine.data,columns=wine.feature_names)
y=wine.targetrfc=RandomForestClassifier(max_depth=4,random_state=0)
rfc.fit(X,y)
y_pred=rfc.predict(X)accuracy=accuracy_score(y,y_pred)
1.2.1 sklearn包实现

 &ems;常用的机器学习包sklearn中也集成了这种方法,但是需要单独写代码来实现可视化。其具体代码如下:

from sklearn.inspection import permutation_importance
result=permutation_importance(rfc,X,y,n_repeats=10,random_state=42)feat=pd.DataFrame(np.hstack(([[col] for col in wine.feature_names],[[item] for item in result['importances_mean']])),columns=['Feat','Imp'])
feat['Imp']=feat['Imp'].astype(float)
feat=feat.sort_values('Imp',ascending=False)
sns.barplot(x='Imp',y='Feat',data=feat)
plt.show()

其结果如下:
在这里插入图片描述

1.2.2 eli5包实现
import eli5
from eli5.sklearn import PermutationImportance
perm=PermutationImportance(rfc,n_iter=10)
perm.fit(X,y)
eli5.show_weights(perm,feature_names=wine.feature_names)

其结果如下:
在这里插入图片描述

1.3 参考资料

  • https://blog.csdn.net/weixin_39653948/article/details/110731460
  • https://blog.csdn.net/qq_41185868/article/details/126046956

2 Partial Dependency Plots(部分依赖图,PDP)

2.1 算法原理

  部分依赖图(PDP)展示了一个或两个特征对机器学习模型预测结果的边际效应。部分依赖图可以显示目标和特征之间的关系是线性的、单调的还是更复杂的关系。PDP假设所有特征两两不相关。其具体步骤如下:

  • 训练一个机器学习模型(假设特征依次为F1…Fn,yF_{1} \dots F_{n},yF1Fn,y为目标变量);
  • 假设需要探究特征F1F_{1}F1对目标变量yyy的边际效应;
  • 特征F1F_{1}F1的取值依次为(a1,a2,…,an)(a_{1},a_{2},\dots,a_{n})(a1,a2,,an); 依次用a1,a2,…,ana_{1},a_{2},\dots,a_{n}a1,a2,,an代替F1F_{1}F1列,其他特征保持不变。利用训练好的模型对这些数据进行预测,计算所有样本的预测平均值。
  • 以特征F1F_{1}F1的不同取值为X轴,其对应的预测样本平均值为Y轴进行作图即可。

2.2 Python实现

2.2.1 安装PDPbox包

  使用如下代码直接安装PDPbox包的时候经常报错。报错的原因在于matplotlib V3.1.1无法正确安装。

pip install PDPbox

在网上查了很多资料也没有解决,所以在相关网站:https://pypi.tuna.tsinghua.edu.cn/simple/pdpbox/ 直接下载了pdpbox的压缩包,解压之后将以下两个文件直接放到python安装路径的lib/site-packages文件夹下即可。
在这里插入图片描述

2.2.2 PDPbox实现
  • 单变量的边际效用
from pdpbox import pdppdp_goals=pdp.pdp_isolate(model=rfc,dataset=X,model_features=wine.feature_names,feature=wine.feature_names[0])
pdp.pdp_plot(pdp_goals,wine.feature_names[0])
plt.show()

在这里插入图片描述

  • 交叉特征的边际效用
pdp_goals=pdp.pdp_interact(model=rfc,dataset=X,model_features=wine.feature_names,features=wine.feature_names[3:5])
pdp.pdp_interact_plot(pdp_goals,feature_names=wine.feature_names[3:5])
plt.show()

在这里插入图片描述

2.2.3 sklearn实现

  除了使用专用的PDPbox箱之外,还可以使用sklearn包来实现部分依赖图。具体使用方法如下:

from sklearn.inspection import plot_partial_dependence
plot_partial_dependence(rfc,X,features=wine.feature_names[0:1],feature_names=wine.feature_names,target=0)
plt.show()plot_partial_dependence(rfc,X,features=wine.feature_names[3:5],feature_names=wine.feature_names,target=0)
plt.show()

其结果如下(这里仅显示第二组结果):
在这里插入图片描述

3 Individual Conditional Expectation(ICE)

3.1 算法原理

  个体条件期望计算方法与PDP类似,它刻画的是每个个体的预测值与单一变量之间的关系,消除了非均匀效应的影响。

3.2 参考资料

  • https://blog.csdn.net/sinat_26917383/article/details/115669705
http://www.15wanjia.com/news/17778.html

相关文章:

  • 济南网站的公司哪家好9个广州seo推广神技
  • 广州网站建设快速排名软文怎么写吸引人
  • flash开发网站深圳网站做优化哪家公司好
  • 危险网站怎么做二维码网站注册域名
  • 做外贸的物流网站网站怎样优化seo
  • 网络营销推广套餐seowhy培训
  • 专业定制网站建设代理不限制内容的搜索引擎
  • 旅游网站开发报价单营销网站建设
  • bootstrap网站模版百度查重
  • 佛山网站建设是哪个怎样制作属于自己的网站
  • 网站主机选择三只松鼠营销案例分析
  • 不同企业的网络营销网站重庆人力资源和社会保障网
  • 万网做网站顺序域名注册网站
  • wordpress最新文章的分类名称如何seo推广
  • 怎么做网站导航栏手机软文广告300字
  • 网站地图什么格式网络舆情分析报告模板
  • 万网阿里云域名查询无锡百度seo优化
  • 网页设计基础的期末试卷和答案福州短视频seo
  • 怎么做公司网站优化长尾关键词搜索
  • 做好网站建设对企业有什么作用营销网站建设都是专业技术人员
  • 做一网站要什么如何推广好一个产品
  • 通化 网站建设google官网入口手机版
  • 商务网站开发流程买链接
  • 企业公示信息查询系统吉林莱芜seo
  • 论述简述网站制作的步骤百度网址大全网站
  • 天津市住房和城乡建设委员会网站今天北京发生大事了
  • 柳州企业网站建设公司淘宝代运营公司排名
  • 淘宝优惠卷网站怎么做东莞网络营销平台
  • 汕头网站开发定制电商平台运营方案思路
  • 怎么做提货网站搜索图片识别