当前位置: 首页 > news >正文

大学做视频网站外链发布网站

大学做视频网站,外链发布网站,如何引用404做网站,自己做网站需要学什么软件下载文章目录 引言四、概率基本公式4.1 减法公式4.2 加法公式4.3 条件概率公式4.4 乘法公式 五、事件的独立性5.1 事件独立的定义5.1.1 两个事件的独立5.1.2 三个事件的独立 5.2 事件独立的性质 写在最后 引言 承接上文,继续介绍概率论与数理统计第一章的内容。 四、概…

文章目录

  • 引言
  • 四、概率基本公式
    • 4.1 减法公式
    • 4.2 加法公式
    • 4.3 条件概率公式
    • 4.4 乘法公式
  • 五、事件的独立性
    • 5.1 事件独立的定义
      • 5.1.1 两个事件的独立
      • 5.1.2 三个事件的独立
    • 5.2 事件独立的性质
  • 写在最后


引言

承接上文,继续介绍概率论与数理统计第一章的内容。


四、概率基本公式

4.1 减法公式

P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) . P(A-B)=P(A \overline{B} )=P(A)-P(AB). P(AB)=P(AB)=P(A)P(AB). 证明: A = ( A − B ) + A B A=(A-B)+AB A=(AB)+AB ,且 A − B A-B AB A B AB AB 互斥,根据概率的有限可加性,有 P ( A ) = P ( A − B ) + P ( A B ) P(A)=P(A-B)+P(AB) P(A)=P(AB)+P(AB) ,即 P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(AB)=P(A)P(AB)
A = A B ‾ + A B A=A\overline{B} +AB A=AB+AB ,且 A B ‾ A\overline{B} AB A B AB AB 互斥,由有限可加性得: P ( A B ‾ ) = P ( A ) − P ( A B ) P(A \overline{B} )=P(A)-P(AB) P(AB)=P(A)P(AB)

4.2 加法公式

(1) P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)+P(B)-P(AB). P(A+B)=P(A)+P(B)P(AB).
证明: A + B = ( A − B ) + ( B − A ) + A B A+B=(A-B)+(B-A)+AB A+B=(AB)+(BA)+AB ,且 A − B , B − A , A B A-B,B-A,AB AB,BA,AB 两两互斥,由有限可加性,可得: P ( A + B ) = P ( A − B ) + P ( B − A ) + P ( A B ) P(A+B)=P(A-B)+P(B-A)+P(AB) P(A+B)=P(AB)+P(BA)+P(AB) 再结合减法公式,有: P ( A + B ) = P ( A ) − P ( A B ) + P ( B ) − P ( B A ) + P ( A B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)-P(AB)+P(B)-P(BA)+P(AB)=P(A)+P(B)-P(AB). P(A+B)=P(A)P(AB)+P(B)P(BA)+P(AB)=P(A)+P(B)P(AB). (2) P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) . P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC). P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC).

4.3 条件概率公式

A , B A,B A,B 为两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( B ∣ A ) = P ( A B ) P ( A ) . P(B | A)= \frac{P(AB)}{P(A)}. P(BA)=P(A)P(AB).

4.4 乘法公式

(1)设 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( A B ) = P ( A ) P ( B ∣ A ) . P(AB)=P(A)P(B|A). P(AB)=P(A)P(BA).

(2) P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) … P ( A n ∣ A 1 A 2 … A n − 1 ) . P(A_1A_2 \dots A_n)=P(A_1)P(A_2|A_1)P( A_3|A_1A_2)\dots P(A_n|A_1A_2\dots A_{n-1}). P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1).


五、事件的独立性

5.1 事件独立的定义

5.1.1 两个事件的独立

A , B A,B A,B 为两个随机事件,若 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则称事件 A , B A,B A,B 相互独立。

5.1.2 三个事件的独立

A , B , C A,B,C A,B,C 为三个随机事件,若满足 P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C) ,则称三个事件 A , B , C A,B,C A,B,C 相互独立。

5.2 事件独立的性质

性质 1 若事件 A A A B B B 相互独立,则 A A A B ‾ \overline{B} B A ‾ \overline{A} A B B B A ‾ \overline{A} A B ‾ \overline{B} B 也相互独立,反之亦成立。

证明:由独立可知, P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则 P ( A B ‾ ) = P ( A − B ) = P ( A ) − P ( A B ) = P ( A ) − P ( A ) P ( B ) = P ( A ) P ( B ‾ ) , P(A\overline{B})=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)P(\overline{B}), P(AB)=P(AB)=P(A)P(AB)=P(A)P(A)P(B)=P(A)P(B), A A A B ‾ \overline{B} B 相互独立, A ‾ \overline{A} A B B B 相互独立同理可证。

P ( A ‾ ∩ B ‾ ) = P ( A ∪ B ) ‾ = 1 − P ( A + B ) = 1 − P ( A ) − P ( B ) + P ( A B ) = [ 1 − P ( A ) ] [ 1 − P ( B ) ] = P ( A ‾ ) P ( B ‾ ) P(\overline{A}\cap \overline{B})=P(\overline{A \cup B)}=1-P(A+B)=1-P(A)-P(B)+P(AB)=[1-P(A)][1-P(B)]=P(\overline{A})P(\overline{B}) P(AB)=P(AB)=1P(A+B)=1P(A)P(B)+P(AB)=[1P(A)][1P(B)]=P(A)P(B) ,则有 A ‾ \overline{A} A B ‾ \overline{B} B 相互独立,反之证明同理。

性质 2 A , B A,B A,B 为两个随机事件且 P ( A ) = 0 P(A)=0 P(A)=0 P ( A ) = 1 P(A)=1 P(A)=1 ,则 A , B A,B A,B 相互独立。

证明:设 P ( A ) = 0 P(A)=0 P(A)=0 ,由 A B ⊂ A AB \sub A ABA 可知, P ( A B ) ≤ P ( A ) = 0 P(AB) \leq P(A)=0 P(AB)P(A)=0 ,又因为 P ( A B ) ≥ 0 P(AB) \geq0 P(AB)0 ,故 P ( A B ) = 0 P(AB)=0 P(AB)=0 ,即有 P ( A B ) = P ( A ) = 0 P(AB)=P(A)=0 P(AB)=P(A)=0 ,可得 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,从而有 A , B A,B A,B 相互独立。

P ( A ) = 1 P(A)=1 P(A)=1 P ( A ‾ ) = 0 P(\overline{A})=0 P(A)=0 P ( B A ‾ ) = P ( B ) − P ( A ) ≤ 1 P(B\overline{A})=P(B)-P(A) \leq1 P(BA)=P(B)P(A)1 ,由 P ( A ) = 1 P(A)=1 P(A)=1 ,可知 P ( B A ‾ ) = 0 P(B\overline{A})=0 P(BA)=0 ,故 P ( B A ‾ ) = P ( A ‾ ) P ( B ) P(B\overline{A})=P(\overline{A})P(B) P(BA)=P(A)P(B) ,即有 A ‾ \overline{A} A B B B 相互独立,根据性质 1 ,事件 A , B A,B A,B 相互独立。

1,事件 A , B , C A,B,C A,B,C 两两独立,则事件 A , B , C A,B,C A,B,C 不一定独立。
2,设 A , B A,B A,B 为两个随机事件,且 P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0 ,则
A , B A,B A,B 独立,则 A , B A,B A,B 不互斥。因为此时 P ( A B ) = P ( A ) P ( B ) > 0 P(AB)=P(A)P(B)>0 P(AB)=P(A)P(B)>0 ,不为空集。
A , B A,B A,B 互斥,则 A , B A,B A,B 不独立。此时 P ( A B ) = ∅ P(AB)=\empty P(AB)= ,必不可能等于 P ( A ) P ( B ) P(A)P(B) P(A)P(B)

设事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am ,事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn 相互独立,则由事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am 所构成的任意事件 φ ( A 1 , A 2 , … , A m ) \varphi(A_1,A_2,\dots,A_m) φ(A1,A2,,Am) 与由事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn 构成的任意事件 ϕ ( B 1 , B 2 , … , B n ) \phi (B_1,B_2,\dots,B_n) ϕ(B1,B2,,Bn) 相互独立。


写在最后

剩下一个贝叶斯和全概率,还有概型,放到后面吧。

http://www.15wanjia.com/news/17145.html

相关文章:

  • 一个人做网站怎样做自己的网站
  • 学校网站首页制作网络营销平台名词解释
  • 烟台网站排名seo长春网络优化最好的公司
  • 雪域什么网站是做电影的seo营销推广全程实例
  • 做视频网站的技能社群营销案例
  • 广东快速做网站公司产品推广的渠道
  • 节点网站吉林seo基础知识
  • 做网站带来好处seo代做
  • 做淘客网站需要企业的域名最有效的推广方式
  • 委托网站建设合同头条新闻今日头条
  • 手机公司网站建设seo整站网站推广优化排名
  • 个人网站备案需要盖章吗济南百度竞价
  • dede如何手机网站和电脑网站的数据同步更新百度人气榜排名
  • 网站改版 更换域名seo标题优化关键词
  • 做旅游攻略的网站网络营销优化培训
  • 苏州做网站优化哪家好宁波seo网站排名
  • 漳州做网站的公司百度客服人工在线咨询电话
  • 网站和app可以做充值余额功能佛山网站建设十年乐云seo
  • 长沙企业网站seo无锡谷歌优化
  • 北京网站建设著名公司关键词优化推广排名多少钱
  • 网站定制化开发介绍seo排名公司
  • 网站 必须有的功能b2b电子商务平台排名
  • 一个购物交易网站怎么做福州关键词排名软件
  • 河南企业网站备案今日新闻最新头条10条内容
  • 网站建设一般多少钱比较合适如何引流推广
  • 一年网站维护seo诊断分析在线工具
  • 学做土建资料员的网站友情链接购买
  • 建设储蓄卡网站怎么自己创建一个网页
  • 武汉建设学校网站东莞seo关键词
  • 网站开发如何压缩图片网站空间