当前位置: 首页 > news >正文

手机网站制作要求百度商家

手机网站制作要求,百度商家,悦然,吉林省人民政府门户网站1.前期准备 (1)Flink基础环境安装 参考文章: 利用docker-compose来搭建flink集群-CSDN博客 显示为这样就成功了 (2)把docker,docker-compose,kafka集群安装配置好 参考文章: …

1.前期准备

(1)Flink基础环境安装

参考文章:

利用docker-compose来搭建flink集群-CSDN博客

显示为这样就成功了

(2)把docker,docker-compose,kafka集群安装配置好

参考文章:

利用docker搭建kafka集群并且进行相应的实践-CSDN博客

这篇文章里面有另外两篇文章的链接,点进去就能够看到

(3)在windows上面,创建一个数据库mysql1(如果没有的话就需要创建),接着在这个数据库里面建一个表min_table

具体代码如下

create database if not exists mysql1; -- 注释符为‘-- '注意有个空格

use mysql1;

CREATE TABLE min_table (

    id INT AUTO_INCREMENT PRIMARY KEY,

    timestamp TIMESTAMP NOT NULL,

    quantity INT NOT NULL,

    amount DOUBLE NOT NULL,

    UNIQUE KEY unique_timestamp (timestamp)

);

create database if not exists mysql1; -- 注释符为‘-- '注意有个空格use mysql1;CREATE TABLE min_table (id INT AUTO_INCREMENT PRIMARY KEY,timestamp TIMESTAMP NOT NULL,quantity INT NOT NULL,amount DOUBLE NOT NULL,UNIQUE KEY unique_timestamp (timestamp));

(4)接着在安装配置了flink的linux虚拟机上面安装好mysql

参考文章:黑马大数据学习笔记4-Hive部署和基本操作_黑马大数据 hive笔记-CSDN博客

 (5)然后同样的在linux虚拟机上面的mysql中创建一个数据库mysql1(如果没有的话就需要创建),接着在这个数据库里面建一个表min_table

具体代码如下

create database if not exists mysql1; -- 注释符为‘-- '注意有个空格

use mysql1;

CREATE TABLE min_table (

    id INT AUTO_INCREMENT PRIMARY KEY,

    timestamp TIMESTAMP NOT NULL,

    quantity INT NOT NULL,

    amount DOUBLE NOT NULL,

    UNIQUE KEY unique_timestamp (timestamp)

);

create database if not exists mysql1; -- 注释符为‘-- '注意有个空格use mysql1;CREATE TABLE min_table (id INT AUTO_INCREMENT PRIMARY KEY,timestamp TIMESTAMP NOT NULL,quantity INT NOT NULL,amount DOUBLE NOT NULL,UNIQUE KEY unique_timestamp (timestamp));

(6)在idea里面新建一个Maven项目,名字叫做FlinkDemo然后往pom.xml中添加以下配置

<dependencies><!-- Flink 的核心库 --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>1.18.0</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java</artifactId><version>1.18.0</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>1.18.0</version></dependency><!-- Flink Kafka Connector --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>3.0.1-1.18</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-jdbc</artifactId><version>3.1.1-1.17</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.33</version></dependency></dependencies>
<build><plugins><plugin><artifactId>maven-assembly-plugin</artifactId><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><executions><execution><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin></plugins>
</build>

这个和上面的是一个东西,就看你喜欢一键复制还是分别复制了

<dependencies>
    <!-- Flink 的核心库 -->
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-java</artifactId>
        <version>1.18.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java</artifactId>
        <version>1.18.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-clients</artifactId>
        <version>1.18.0</version>
    </dependency>

    <!-- Flink Kafka Connector -->
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-kafka</artifactId>
        <version>3.0.1-1.18</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-jdbc</artifactId>
        <version>3.1.1-1.17</version>
    </dependency>
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.0.33</version>
    </dependency>


</dependencies>
<build>
    <plugins>
        <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

(7)在该项目的com.examle目录下创建三个文件

     目录结构如下

DatabaseSink.java
package com.example;import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.types.Row;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple3;import java.sql.PreparedStatement;
import java.sql.Timestamp;public class DatabaseSink {private String url;private String username;private String password;public DatabaseSink(String url, String username, String password) {this.url = url;this.username = username;this.password = password;}public void addSink(DataStream<Tuple3<Timestamp, Long, Double>> stream) {stream.addSink(JdbcSink.sink("INSERT INTO min_table (timestamp, quantity, amount) VALUES (?, ?, ?) ON DUPLICATE KEY UPDATE quantity = quantity + VALUES(quantity), amount = amount + VALUES(amount)",(ps, t) -> {ps.setTimestamp(1, t.f0);ps.setLong(2, t.f1);ps.setDouble(3, t.f2);},new JdbcExecutionOptions.Builder().withBatchSize(5000).withBatchIntervalMs(200).withMaxRetries(5).build(),new JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withUrl(this.url).withDriverName("com.mysql.jdbc.Driver").withUsername(this.username).withPassword(this.password).build()));}
}
LocalFlinkTest.java
package com.example;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.kafka.clients.consumer.OffsetResetStrategy;import java.sql.Timestamp;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.TimeUnit;public class LocalFlinkTest {public static void main(String[] args) throws Exception {SimpleDateFormat sdf = new SimpleDateFormat(("yyyy-MM-dd HH:mm"));SimpleDateFormat sdf_hour = new SimpleDateFormat("yyyy-MM-dd HH");final StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();env.setRestartStrategy(RestartStrategies.fixedDelayRestart(333, // 尝试重启的次数org.apache.flink.api.common.time.Time.of(10, TimeUnit.SECONDS) // 延迟));env.setRestartStrategy(RestartStrategies.noRestart());KafkaSource<String> source = KafkaSource.<String>builder().setBootstrapServers("192.168.88.101:19092,192.168.88.101:29092,192.168.88.101:39092") // 你的 Kafka 服务器地址.setGroupId("testGroup") // 你的消费者组 ID.setTopics("foo") // 你的主题.setValueOnlyDeserializer(new SimpleStringSchema()).setStartingOffsets(OffsetsInitializer.committedOffsets(OffsetResetStrategy.LATEST)) // 从消费者组的最新偏移量开始消费.build();DataStream<String> stream = env.fromSource(source,WatermarkStrategy.noWatermarks(), "Kafka Source");
// flatMap 函数,它接收一个输入元素,并可以输出零个、一个或多个元素。
// 在这个函数中,输入元素是从 Kafka 中读取的一行数据,输出元素是一个包含交易量的元组。
// 近 1 分钟与当天累计的总交易金额、交易数量
//                DataStream<String> stream = env.readTextFile("D:\\idea\\flinkTest\\src\\main\\java\\com\\springbootdemo\\2.csv", "GBK");DataStream<Tuple3<Timestamp, Long, Double>> transactionVolumes = stream.filter(new FilterFunction<String>() {@Overridepublic boolean filter(String value) throws Exception {// 假设文件的第一行是表头,这里跳过它return !value.startsWith("time");}}).flatMap(new FlatMapFunction<String, Tuple3<Timestamp, Long,Double>>() {@Overridepublic void flatMap(String line, Collector<Tuple3<Timestamp, Long,Double>> out) {try {String[] fields = line.split(",");String s = fields[0];
// 解析时间字符串后,将日期时间对象的秒字段设置为 0Date date = sdf.parse(s);Timestamp sqlTimestamp = new Timestamp(date.getTime());double price = Double.parseDouble(fields[3]);long quantity = Long.parseLong(fields[4]);double amount = price * quantity;out.collect(Tuple3.of(sqlTimestamp, quantity, amount));
// System.out.println(line);} catch (Exception e) {System.out.println(line);                        }}}); // 过滤掉解析失败的记录;// 计算每 500 毫秒的数据
// keyBy(t -> t.f0)代表以第一个字段 Timestamp 为键,确保一个窗口内的时间都是相同的DataStream<Tuple3<Timestamp,Long ,Double>> oneSecondAmounts =transactionVolumes.keyBy(t -> t.f0).windowAll(TumblingProcessingTimeWindows.of(Time.seconds(10))).reduce((Tuple3<Timestamp,Long ,Double> value1,Tuple3<Timestamp,Long ,Double> value2) -> {
//                            System.out.println(Tuple3.of(value1.f0,value1.f1 + value2.f1, value1.f2 + value2.f2));return Tuple3.of(value1.f0,value1.f1 + value2.f1, value1.f2 +value2.f2);});oneSecondAmounts.print();DatabaseSink dbSink = new DatabaseSink("jdbc:mysql://localhost:3306/mysql1", "root", "123456");dbSink.addSink(oneSecondAmounts);env.execute("Kafka Flink Demo");}
}
DatabaseSink dbSink = new DatabaseSink("jdbc:mysql://localhost:3306/mysql1", "root", "123456");

这里的密码应该改成你自己的。(当然博主本人的是123456)

FlinkTest.java
package com.example;import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.kafka.clients.consumer.OffsetResetStrategy;import java.sql.Timestamp;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.TimeUnit;public class FlinkTest {public static void main(String[] args) throws Exception {SimpleDateFormat sdf = new SimpleDateFormat(("yyyy-MM-dd HH:mm"));SimpleDateFormat sdf_hour = new SimpleDateFormat("yyyy-MM-dd HH");final StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();env.setRestartStrategy(RestartStrategies.fixedDelayRestart(333, // 尝试重启的次数org.apache.flink.api.common.time.Time.of(10, TimeUnit.SECONDS) // 延迟));env.setRestartStrategy(RestartStrategies.noRestart());KafkaSource<String> source = KafkaSource.<String>builder().setBootstrapServers("192.168.88.101:19092,192.168.88.101:29092,192.168.88.101:39092") // 你的 Kafka 服务器地址.setGroupId("testGroup") // 你的消费者组 ID.setTopics("foo") // 你的主题.setValueOnlyDeserializer(new SimpleStringSchema()).setStartingOffsets(OffsetsInitializer.committedOffsets(OffsetResetStrategy.LATEST)) // 从消费者组的最新偏移量开始消费.build();DataStream<String> stream = env.fromSource(source,WatermarkStrategy.noWatermarks(), "Kafka Source");
// flatMap 函数,它接收一个输入元素,并可以输出零个、一个或多个元素。
// 在这个函数中,输入元素是从 Kafka 中读取的一行数据,输出元素是一个包含交易量的元组。
// 近 1 分钟与当天累计的总交易金额、交易数量
//                DataStream<String> stream = env.readTextFile("D:\\idea\\flinkTest\\src\\main\\java\\com\\springbootdemo\\2.csv", "GBK");DataStream<Tuple3<Timestamp, Long, Double>> transactionVolumes = stream.filter(new FilterFunction<String>() {@Overridepublic boolean filter(String value) throws Exception {// 假设文件的第一行是表头,这里跳过它return !value.startsWith("time");}}).flatMap(new FlatMapFunction<String, Tuple3<Timestamp, Long,Double>>() {@Overridepublic void flatMap(String line, Collector<Tuple3<Timestamp, Long,Double>> out) {try {String[] fields = line.split(",");String s = fields[0];
// 解析时间字符串后,将日期时间对象的秒字段设置为 0Date date = sdf.parse(s);Timestamp sqlTimestamp = new Timestamp(date.getTime());double price = Double.parseDouble(fields[3]);long quantity = Long.parseLong(fields[4]);double amount = price * quantity;out.collect(Tuple3.of(sqlTimestamp, quantity, amount));
// System.out.println(line);} catch (Exception e) {System.out.println(line);                        }}}); // 过滤掉解析失败的记录;// 计算每 500 毫秒的数据
// keyBy(t -> t.f0)代表以第一个字段 Timestamp 为键,确保一个窗口内的时间都是相同的DataStream<Tuple3<Timestamp,Long ,Double>> oneSecondAmounts =transactionVolumes.keyBy(t -> t.f0).windowAll(TumblingProcessingTimeWindows.of(Time.seconds(10))).reduce((Tuple3<Timestamp,Long ,Double> value1,Tuple3<Timestamp,Long ,Double> value2) -> {
//                            System.out.println(Tuple3.of(value1.f0,value1.f1 + value2.f1, value1.f2 + value2.f2));return Tuple3.of(value1.f0,value1.f1 + value2.f1, value1.f2 +value2.f2);});oneSecondAmounts.print();DatabaseSink dbSink = new DatabaseSink("jdbc:mysql://192.168.88.101:3306/mysql1", "root", "123456");dbSink.addSink(oneSecondAmounts);env.execute("Kafka Flink Demo");}
}
DatabaseSink dbSink = new DatabaseSink("jdbc:mysql://192.168.88.101:3306/mysql1", "root", "123456");

这里的密码和主机号(192.168.88.101)应该改成你自己的密码和主机号

2.开始实验,分为本地测试和flink测试

(1)启动node1,打开Finalshell,启动docker,启动kafka集群,flink集群

systemctl start docker
cd /export/server
docker-compose -f kafka.yml up -d
docker-compose -f flink.yml up -d
docker ps

效果如下

(2)先进行本地测试(这里只需要用到kafka集群)

打开两个node1的窗口
在第二个窗口进入kafka2容器,启动消费者进程

代码

docker exec -it kafka2 /bin/bash
cd /opt/bitnami/kafka/bin
kafka-console-consumer.sh --bootstrap-server 172.23.0.11:9092,172.23.0.12:9092,172.23.0.13:9092 --topic foo

 效果如下

进入idea,运行这个文件LocalFlinkTest.java

在第一个窗口进入kafka1容器,发送文件的前5行

[root@node1 server]# docker exec -it kafka1 /bin/bash

root@a2f7152188c1:/#  cd /opt/bitnami/kafka/bin

root@a2f7152188c1:/opt/bitnami/kafka/bin# head -n 5 /bitnami/kafka/stock-part10.csv | kafka-console-producer.sh --broker-list 172.23.0.11:9092,172.23.0.12:9092,172.23.0.13:9092 --topic foo

root@a2f7152188c1:/opt/bitnami/kafka/bin#

代码

docker exec -it kafka1 /bin/bash
cd /opt/bitnami/kafka/bin
head -n 5 /bitnami/kafka/stock-part10.csv | kafka-console-producer.sh --broker-list 172.23.0.11:9092,172.23.0.12:9092,172.23.0.13:9092 --topic foo

接着在idea里面查看

在mysql里查看

到这里,本地测试就已经成功了!

(3)再进行flink测试,先在idea这里双击packge,然后去target目录看看有没有多出这两个文件(先运行文件FlinkTest.java先)

运行文件FlinkTest.java

在idea这里双击packge,然后去target目录看看有没有多出这两个文件 

进入网页node1:8081,上传这个名字更长的jar包

输入这个路径
D:\JetBrains\idea-project\FlinkDemo\target
(反正就是target目录的位置)

添加成功后

点一下那个玩意儿填入如下内容com.example.FlinkTest

这个com.example.FlinkTest是FlinkTest.java在项目中的路径

以及选择输入3

然后点击submit提交即可,结果显示正常运行

再回到node1的第一个窗口,
在这个位置
root@41d3910fe6c9:/opt/bitnami/kafka/bin#输入以下代码(kafka1的/opt/bitnami/kafka/bin目录下)来发个文件过去

代码

cat /bitnami/kafka/stock-part10.csv | kafka-console-producer.sh --broker-list 172.23.0.11:9092,172.23.0.12:9092,172.23.0.13:9092 --topic foo

任意点开一个,在监控参数中选择numRecordsInPerSecond可以查看每秒处理数据速度。


文章转载自:
http://botanic.bbmx.cn
http://glabellum.bbmx.cn
http://leastways.bbmx.cn
http://airmark.bbmx.cn
http://inoculate.bbmx.cn
http://snaphance.bbmx.cn
http://humming.bbmx.cn
http://rendrock.bbmx.cn
http://watercourse.bbmx.cn
http://knelt.bbmx.cn
http://diacidic.bbmx.cn
http://kalimantan.bbmx.cn
http://blueberry.bbmx.cn
http://toluca.bbmx.cn
http://laius.bbmx.cn
http://tissular.bbmx.cn
http://imputrescible.bbmx.cn
http://verticillate.bbmx.cn
http://alemannic.bbmx.cn
http://dirl.bbmx.cn
http://chowchow.bbmx.cn
http://theologaster.bbmx.cn
http://allegorically.bbmx.cn
http://pyroxene.bbmx.cn
http://equity.bbmx.cn
http://socratism.bbmx.cn
http://adoration.bbmx.cn
http://voiture.bbmx.cn
http://presume.bbmx.cn
http://voodoo.bbmx.cn
http://moste.bbmx.cn
http://invasion.bbmx.cn
http://audiogram.bbmx.cn
http://ichthyologically.bbmx.cn
http://instruct.bbmx.cn
http://psychoprison.bbmx.cn
http://orientalism.bbmx.cn
http://triaxial.bbmx.cn
http://backcloth.bbmx.cn
http://spermatocide.bbmx.cn
http://snowpack.bbmx.cn
http://apiaceous.bbmx.cn
http://dexiotropic.bbmx.cn
http://underslept.bbmx.cn
http://excusal.bbmx.cn
http://smolt.bbmx.cn
http://swingle.bbmx.cn
http://uninhabited.bbmx.cn
http://testate.bbmx.cn
http://relevance.bbmx.cn
http://lantana.bbmx.cn
http://tonguelet.bbmx.cn
http://miss.bbmx.cn
http://jacana.bbmx.cn
http://eldorado.bbmx.cn
http://backslap.bbmx.cn
http://pneumatically.bbmx.cn
http://charitably.bbmx.cn
http://ovulate.bbmx.cn
http://chickabiddy.bbmx.cn
http://unprepossessing.bbmx.cn
http://squinch.bbmx.cn
http://hirudin.bbmx.cn
http://eclamptic.bbmx.cn
http://annalist.bbmx.cn
http://acidulous.bbmx.cn
http://unexpected.bbmx.cn
http://platypi.bbmx.cn
http://pastorale.bbmx.cn
http://phlogosis.bbmx.cn
http://fluoroscopy.bbmx.cn
http://waveform.bbmx.cn
http://relive.bbmx.cn
http://sporadic.bbmx.cn
http://cannibalize.bbmx.cn
http://store.bbmx.cn
http://francesca.bbmx.cn
http://culpable.bbmx.cn
http://receiptor.bbmx.cn
http://pharmacodynamic.bbmx.cn
http://hoer.bbmx.cn
http://zho.bbmx.cn
http://autochory.bbmx.cn
http://befitting.bbmx.cn
http://busload.bbmx.cn
http://gurk.bbmx.cn
http://mouthy.bbmx.cn
http://tyrannize.bbmx.cn
http://cribellum.bbmx.cn
http://toplofty.bbmx.cn
http://gargouillade.bbmx.cn
http://cypriote.bbmx.cn
http://natron.bbmx.cn
http://denary.bbmx.cn
http://jangle.bbmx.cn
http://lorrie.bbmx.cn
http://fatshedera.bbmx.cn
http://cert.bbmx.cn
http://tontru.bbmx.cn
http://clearwing.bbmx.cn
http://www.15wanjia.com/news/95903.html

相关文章:

  • 个人创办网站百度网站搜索排名
  • 有什么做网站的国企广州网页seo排名
  • 做网站 域名 最快要多久采集站seo课程
  • 做软件开发视频网站游戏推广员骗局
  • 网站开发 安全验证廊坊seo推广公司
  • 重庆怎么站seo搜狗竞价
  • 做贸易的都有什么网站重庆网站搭建
  • 怎么在网站里给图片做超链接短视频赚钱app软件
  • 网站建设访问对象站长之家seo工具包
  • 辽宁省交通投资建设集团网站凡科建站官网入口
  • 海口顶尖网站建设图片识别
  • 龙岗区网站建设徐州seo招聘
  • 网站返回404关键词搜索引擎排名查询
  • 做视频可以领钱的网站新媒体seo指的是什么
  • 界首工程建设信息网站推广普通话的意义论文
  • 公司网站开发详细流程网络推广怎么找客户
  • 怎样在wordpress页面嵌入div刷百度关键词排名优化
  • 网站建设地基本流程seo推广软件费用
  • 网站设计相似侵权吗链接提交入口
  • 医疗网站建设平台批量优化网站软件
  • 网站建设都需要什么廊坊seo网站管理
  • wordpress 7牛企业网站优化哪家好
  • wordpress修改版面百度关键词搜索优化
  • 有没有专门做建筑造价的私单网站网络营销推广活动有哪些
  • 做国外产品描述的网站免费网络空间搜索引擎
  • 建设春风摩托车官方网站网络营销好不好
  • 怎么在360做网站餐饮营销策划与运营
  • 一定得做网站认证八宿县网站seo优化排名
  • 线上营销和线下营销seod的中文意思
  • 南京工商注册核名查询系统seo网站关键词优化报价