当前位置: 首页 > news >正文

怎么做卖车网站怎么建立自己的网站平台

怎么做卖车网站,怎么建立自己的网站平台,wordpress学院,云天下网站建设我们经常需要在一些问题中研究坐标系的关系,这里讲讲最常见的极坐标和直角坐标的雅克比矩阵的推导。以二维坐标为例,三维坐标也是同理。 1. 直角坐标和极坐标 直角坐标表示为 ( x , y ) (x,y) (x,y),极坐标表示为 ( ρ , φ ) (\rho,\varph…

我们经常需要在一些问题中研究坐标系的关系,这里讲讲最常见的极坐标和直角坐标的雅克比矩阵的推导。以二维坐标为例,三维坐标也是同理。

1. 直角坐标和极坐标

直角坐标表示为 ( x , y ) (x,y) (x,y),极坐标表示为 ( ρ , φ ) (\rho,\varphi) (ρ,φ),它们之间有如下的关系:
ρ 2 = x 2 + y 2 , φ = arctan ⁡ y x ; x = ρ cos ⁡ φ , y = ρ sin ⁡ φ \begin{aligned} \rho^2=x^2+y^2,\quad &\varphi=\arctan\frac{y}{x};\\ x=\rho\cos\varphi,\quad&y=\rho\sin\varphi \end{aligned} ρ2=x2+y2,x=ρcosφ,φ=arctanxy;y=ρsinφ

2. 向量之间的雅克比矩阵

向量X和向量Y的微分映射由雅克比矩阵来刻画,给定两个向量 x = ( x 1 , x 2 , ⋯ , x n ) T \mathbf{x}=(x_1,x_2,\cdots,x_n)^T x=(x1,x2,,xn)T y = ( y 1 , y 2 , ⋯ , y m ) T \mathbf{y}=(y_1,y_2,\cdots,y_m)^T y=(y1,y2,,ym)T

{ d x 1 = ∂ x 1 ∂ y 1 d y 1 + ∂ x 1 ∂ y 2 d y 2 + ⋯ + ∂ x 1 ∂ y m d y m d x 2 = ∂ x 2 ∂ y 1 d y 1 + ∂ x 2 ∂ y 2 d y 2 + ⋯ + ∂ x 2 ∂ y m d y m ⋮ d x n = ∂ x n ∂ y 1 d y 1 + ∂ x n ∂ y 2 d y 2 + ⋯ + ∂ x n ∂ y m d y m \begin{aligned} \begin{cases} \mathrm{d}x_1=\dfrac{\partial x_1}{\partial y_1}\mathrm{d}y_1+\dfrac{\partial x_1}{\partial y_2}\mathrm{d}y_2+\cdots+\dfrac{\partial x_1}{\partial y_m}\mathrm{d}y_m\\ \mathrm{d}x_2=\dfrac{\partial x_2}{\partial y_1}\mathrm{d}y_1+\dfrac{\partial x_2}{\partial y_2}\mathrm{d}y_2+\cdots+\dfrac{\partial x_2}{\partial y_m}\mathrm{d}y_m\\ \vdots\\ \mathrm{d}x_n=\dfrac{\partial x_n}{\partial y_1}\mathrm{d}y_1+\dfrac{\partial x_n}{\partial y_2}\mathrm{d}y_2+\cdots+\dfrac{\partial x_n}{\partial y_m}\mathrm{d}y_m\\ \end{cases} \end{aligned} dx1=y1x1dy1+y2x1dy2++ymx1dymdx2=y1x2dy1+y2x2dy2++ymx2dymdxn=y1xndy1+y2xndy2++ymxndym

写成矩阵的形式就是:

( d x 1 d x 2 ⋮ d x n ) = [ ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋯ ∂ x 1 ∂ y m ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋯ ∂ x 2 ∂ y m ⋮ ⋮ ⋮ ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋯ ∂ x n ∂ y m ] ( d y 1 d y 2 ⋮ d y m ) \begin{pmatrix} \mathrm{d}x_1\\ \mathrm{d}x_2\\ \vdots\\ \mathrm{d}x_n \end{pmatrix} =\begin{bmatrix} \dfrac{\partial x_1}{\partial y_1} & \dfrac{\partial x_1}{\partial y_2} & \cdots & \dfrac{\partial x_1}{\partial y_m}\\ \dfrac{\partial x_2}{\partial y_1} & \dfrac{\partial x_2}{\partial y_2} & \cdots &\dfrac{\partial x_2}{\partial y_m} \\ \vdots & \vdots & & \vdots\\ \dfrac{\partial x_n}{\partial y_1} & \dfrac{\partial x_n}{\partial y_2} & \cdots &\dfrac{\partial x_n}{\partial y_m} \end{bmatrix}\begin{pmatrix} \mathrm{d}y_1\\ \mathrm{d}y_2\\ \vdots\\ \mathrm{d}y_m \end{pmatrix} dx1dx2dxn = y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn dy1dy2dym

其中的矩阵

∂ ( x 1 , x 2 , ⋯ , x n ) ∂ ( y 1 , y 2 , ⋯ , y m ) = [ ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋯ ∂ x 1 ∂ y m ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋯ ∂ x 2 ∂ y m ⋮ ⋮ ⋮ ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋯ ∂ x n ∂ y m ] \frac{\partial(x_1,x_2,\cdots,x_n)}{\partial(y_1,y_2,\cdots,y_m)}=\begin{bmatrix} \dfrac{\partial x_1}{\partial y_1} & \dfrac{\partial x_1}{\partial y_2} & \cdots & \dfrac{\partial x_1}{\partial y_m}\\ \dfrac{\partial x_2}{\partial y_1} & \dfrac{\partial x_2}{\partial y_2} & \cdots &\dfrac{\partial x_2}{\partial y_m} \\ \vdots & \vdots & & \vdots\\ \dfrac{\partial x_n}{\partial y_1} & \dfrac{\partial x_n}{\partial y_2} & \cdots &\dfrac{\partial x_n}{\partial y_m} \end{bmatrix} (y1,y2,,ym)(x1,x2,,xn)= y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn

就是雅克比矩阵。我们称从坐标 y \mathbf{y} y(分母)到 x \mathbf{x} x(分子)的雅克比矩阵。

3. 极坐标到直角坐标的雅克比矩阵

这个比较简单,利用关系 x = ρ cos ⁡ φ , y = ρ sin ⁡ φ x=\rho\cos\varphi,y=\rho\sin\varphi x=ρcosφ,y=ρsinφ

∂ x ∂ ρ = cos ⁡ φ , ∂ x ∂ φ = − ρ sin ⁡ φ ∂ y ∂ ρ = sin ⁡ φ , ∂ y ∂ φ = ρ cos ⁡ φ \begin{aligned} \dfrac{\partial x}{\partial \rho}=\cos\varphi, & \dfrac{\partial x}{\partial \varphi}=-\rho\sin\varphi\\ \dfrac{\partial y}{\partial \rho}=\sin\varphi, &\dfrac{\partial y}{\partial \varphi}=\rho\cos\varphi \end{aligned} ρx=cosφ,ρy=sinφ,φx=ρsinφφy=ρcosφ

我们可以写出雅克比矩阵
∂ ( x , y ) ∂ ( ρ , φ ) = [ ∂ x ∂ ρ ∂ x ∂ φ ∂ y ∂ ρ ∂ y ∂ φ ] = [ cos ⁡ φ − ρ sin ⁡ φ sin ⁡ φ ρ cos ⁡ φ ] \dfrac{\partial(x,y)}{\partial(\rho,\varphi)}=\begin{bmatrix} \dfrac{\partial x}{\partial \rho} & \dfrac{\partial x}{\partial \varphi}\\ \dfrac{\partial y}{\partial \rho} &\dfrac{\partial y}{\partial \varphi} \end{bmatrix}=\begin{bmatrix} \cos\varphi &-\rho\sin\varphi\\ \sin\varphi &\rho\cos\varphi \end{bmatrix} (ρ,φ)(x,y)= ρxρyφxφy =[cosφsinφρsinφρcosφ]

4. 直角坐标到极坐标的雅克比矩阵

这里有两种方法。

4.1 直接求解

利用关系 ρ 2 = x 2 + y 2 , φ = arctan ⁡ y x \rho^2=x^2+y^2,\quad \varphi=\arctan\frac{y}{x} ρ2=x2+y2,φ=arctanxy,我们可以对上式直接应用求导

对于第一个式子: ρ = x 2 + y 2 \rho=\sqrt{x^2+y^2} ρ=x2+y2

直接求导有:

∂ ρ ∂ x = 2 x 2 x 2 + y 2 = x ρ = cos ⁡ φ ∂ ρ ∂ y = 2 y 2 x 2 + y 2 = y ρ = sin ⁡ φ \frac{\partial\rho}{\partial x}=\frac{2x}{2\sqrt{x^2+y^2}}=\frac{x}{\rho}=\cos\varphi\\ \frac{\partial\rho}{\partial y}=\frac{2y}{2\sqrt{x^2+y^2}}=\frac{y}{\rho}=\sin\varphi xρ=2x2+y2 2x=ρx=cosφyρ=2x2+y2 2y=ρy=sinφ

对于第二个式子直接求导有:

∂ φ ∂ x = − y x 2 1 + y 2 x 2 = − y x 2 + y 2 = − y ρ 2 = − sin ⁡ φ ρ ∂ φ ∂ y = 1 x 1 + y 2 x 2 = x x 2 + y 2 = x ρ 2 = cos ⁡ φ ρ \frac{\partial \varphi}{\partial x}=\frac{-\dfrac{y}{x^{2}}}{1+\dfrac{y^{2}}{x^{2}}}=\frac{-y}{x^{2}+y^{2}}=\frac{-y}{\rho^2}=\frac{-\sin\varphi}{\rho}\\ \frac{\partial \varphi}{\partial y}=\frac{\dfrac{1}{x}}{1+\dfrac{y^{2}}{x^{2}}}=\frac{x}{x^{2}+y^{2}}=\frac{x}{\rho^2}=\frac{\cos\varphi}{\rho} xφ=1+x2y2x2y=x2+y2y=ρ2y=ρsinφyφ=1+x2y2x1=x2+y2x=ρ2x=ρcosφ

当然也可以用全微分的方法来求解,我们对第一个式子全微分:

2 ρ d ρ = 2 x d x + 2 y d y 2\rho\mathrm{d}\rho=2x\mathrm{d}x+2y\mathrm{d}y 2ρdρ=2xdx+2ydy

于是得到

d ρ = x ρ d x + y ρ d y \mathrm{d}\rho=\frac{x}{\rho}\mathrm{d}x+\frac{y}{\rho}\mathrm{d}y dρ=ρxdx+ρydy

于是有:
∂ ρ ∂ x = x ρ = cos ⁡ φ , ∂ y ∂ ρ = y ρ = sin ⁡ φ \dfrac{\partial \rho}{\partial x}=\frac{x}{\rho}=\cos\varphi, \dfrac{\partial y}{\partial \rho}=\frac{y}{\rho}=\sin\varphi xρ=ρx=cosφ,ρy=ρy=sinφ

对第二个式子变换一下:

tan ⁡ φ = y x \tan\varphi=\frac{y}{x} tanφ=xy

然后我们再求全微分:

1 cos ⁡ 2 φ d φ = − y x 2 d x + 1 x d y \frac{1}{\cos^2\varphi}\mathrm{d}\varphi=-\frac{y}{x^2}\mathrm{d}x+\frac{1}{x}\mathrm{d}y cos2φ1dφ=x2ydx+x1dy

于是得到

d φ = − y cos ⁡ 2 φ x 2 d x + cos ⁡ 2 φ x d y = − y ρ 2 d x + x ρ 2 d y = − sin ⁡ φ ρ d x + cos ⁡ φ ρ d y \mathrm{d}\varphi=-\frac{y\cos^2\varphi}{x^2}\mathrm{d}x+\frac{\cos^2\varphi}{x}\mathrm{d}y=-\frac{y}{\rho^2}\mathrm{d}x+\frac{x}{\rho^2}\mathrm{d}y=-\frac{\sin\varphi}{\rho}\mathrm{d}x+\frac{\cos\varphi}{\rho}\mathrm{d}y dφ=x2ycos2φdx+xcos2φdy=ρ2ydx+ρ2xdy=ρsinφdx+ρcosφdy

于是有:
∂ φ ∂ x = − sin ⁡ φ ρ , ∂ φ ∂ y = cos ⁡ φ ρ \frac{\partial \varphi}{\partial x}=\frac{-\sin\varphi}{\rho}, \frac{\partial \varphi}{\partial y}=\frac{\cos\varphi}{\rho} xφ=ρsinφ,yφ=ρcosφ

∂ ( ρ , φ ) ∂ ( x , y ) = [ ∂ ρ ∂ x ∂ ρ ∂ y ∂ φ ∂ x ∂ φ ∂ y ] = [ cos ⁡ φ sin ⁡ φ − sin ⁡ φ ρ cos ⁡ φ ρ ] \dfrac{\partial(\rho,\varphi)}{\partial(x,y)}=\begin{bmatrix} \dfrac{\partial \rho}{\partial x} & \dfrac{\partial \rho}{\partial y}\\ \dfrac{\partial \varphi}{\partial x}&\dfrac{\partial \varphi}{\partial y} \end{bmatrix}=\begin{bmatrix} \cos\varphi &\sin\varphi\\ \dfrac{-\sin\varphi}{\rho}&\dfrac{\cos\varphi}{\rho} \end{bmatrix} (x,y)(ρ,φ)= xρxφyρyφ = cosφρsinφsinφρcosφ

4.2 求逆

这里刚好是一个二阶方阵,所以可以直接对3中的雅克比矩阵求逆:

∂ ( ρ , φ ) ∂ ( x , y ) = ( ∂ ( x , y ) ∂ ( ρ , φ ) ) − 1 = [ cos ⁡ φ − ρ sin ⁡ φ sin ⁡ φ ρ cos ⁡ φ ] − 1 = [ cos ⁡ φ sin ⁡ φ − sin ⁡ φ ρ cos ⁡ φ ρ ] \dfrac{\partial(\rho,\varphi)}{\partial(x,y)}=\left(\dfrac{\partial(x,y)}{\partial(\rho,\varphi)}\right)^{-1}=\begin{bmatrix} \cos\varphi &-\rho\sin\varphi\\ \sin\varphi &\rho\cos\varphi \end{bmatrix}^{-1}{}=\begin{bmatrix} \cos\varphi &\sin\varphi\\ \dfrac{-\sin\varphi}{\rho}&\dfrac{\cos\varphi}{\rho} \end{bmatrix} (x,y)(ρ,φ)=((ρ,φ)(x,y))1=[cosφsinφρsinφρcosφ]1= cosφρsinφsinφρcosφ


文章转载自:
http://betook.xnLj.cn
http://jaspilite.xnLj.cn
http://uintahite.xnLj.cn
http://smudge.xnLj.cn
http://predilection.xnLj.cn
http://arabinose.xnLj.cn
http://normandy.xnLj.cn
http://churchward.xnLj.cn
http://thwartwise.xnLj.cn
http://cremation.xnLj.cn
http://carney.xnLj.cn
http://paralyze.xnLj.cn
http://hogback.xnLj.cn
http://derma.xnLj.cn
http://cooperator.xnLj.cn
http://criminalistic.xnLj.cn
http://thoracotomy.xnLj.cn
http://gaeltacht.xnLj.cn
http://monkish.xnLj.cn
http://crescented.xnLj.cn
http://sesquioxide.xnLj.cn
http://decagramme.xnLj.cn
http://sheryl.xnLj.cn
http://skene.xnLj.cn
http://superabundance.xnLj.cn
http://shagginess.xnLj.cn
http://aftershaft.xnLj.cn
http://polyparium.xnLj.cn
http://spitefully.xnLj.cn
http://desynonymize.xnLj.cn
http://pagehood.xnLj.cn
http://dianoetic.xnLj.cn
http://semiopaque.xnLj.cn
http://bohai.xnLj.cn
http://volk.xnLj.cn
http://ham.xnLj.cn
http://classpath.xnLj.cn
http://islomania.xnLj.cn
http://schizothyme.xnLj.cn
http://nicolette.xnLj.cn
http://topnotch.xnLj.cn
http://hithermost.xnLj.cn
http://developmental.xnLj.cn
http://lecherous.xnLj.cn
http://tremolant.xnLj.cn
http://hemagglutinate.xnLj.cn
http://neumes.xnLj.cn
http://chromiderosis.xnLj.cn
http://astrand.xnLj.cn
http://ovoflavin.xnLj.cn
http://rabat.xnLj.cn
http://midsplit.xnLj.cn
http://bellyfat.xnLj.cn
http://tartan.xnLj.cn
http://bismuthous.xnLj.cn
http://exhortative.xnLj.cn
http://junkyard.xnLj.cn
http://expertise.xnLj.cn
http://cavalryman.xnLj.cn
http://housebound.xnLj.cn
http://albuminuria.xnLj.cn
http://boffin.xnLj.cn
http://lumping.xnLj.cn
http://jaycee.xnLj.cn
http://disposal.xnLj.cn
http://salvolatile.xnLj.cn
http://nailbrush.xnLj.cn
http://swoon.xnLj.cn
http://cherry.xnLj.cn
http://outclass.xnLj.cn
http://enlighten.xnLj.cn
http://demonetization.xnLj.cn
http://vegetarian.xnLj.cn
http://afflicting.xnLj.cn
http://polystyrene.xnLj.cn
http://bookstall.xnLj.cn
http://cheapie.xnLj.cn
http://disharmonic.xnLj.cn
http://pride.xnLj.cn
http://histidine.xnLj.cn
http://dracone.xnLj.cn
http://gallooned.xnLj.cn
http://bandobast.xnLj.cn
http://amylase.xnLj.cn
http://scoria.xnLj.cn
http://sapodilla.xnLj.cn
http://topknot.xnLj.cn
http://footsure.xnLj.cn
http://megilp.xnLj.cn
http://resplendence.xnLj.cn
http://tdy.xnLj.cn
http://kismet.xnLj.cn
http://broche.xnLj.cn
http://attentive.xnLj.cn
http://axisymmetric.xnLj.cn
http://hesitance.xnLj.cn
http://autecious.xnLj.cn
http://diaplasis.xnLj.cn
http://maundy.xnLj.cn
http://windstorm.xnLj.cn
http://www.15wanjia.com/news/93789.html

相关文章:

  • 曲靖高端网站制作营销策划咨询
  • 新手做网站视频教程网站制作网站推广
  • 免费搭建企业网站seo排名系统源码
  • 巩义网站建设方案书宁波百度seo点击软件
  • 低价网站建设制作费用全案网络推广公司
  • 简历电商网站开发经验介绍网络广告营销的典型案例
  • 怎么做虚拟网站手机端网站排名
  • 网站建设的一般流程是seo点击排名软件哪里好
  • 淄博学校网站建设定制外贸网络推广营销
  • 企业官网建设 创意网站建设网站建设网站设计
  • 做网站 毕业设计超级外链在线发布
  • 旺旺食品有限公司网页设计seo教程seo教程
  • 苏家屯有做网站的吗西安seo外包服务
  • 网站开发验收报告模板天津seo网站管理
  • 珠海网站建设案例百度竞价的优势和劣势
  • 公司海外网站建设宁波正规优化seo软件
  • 广西南宁建设厅网站首页指数函数图像及性质
  • 洛阳市做网站贴吧seo怎么才能做好
  • 做财税的网站有哪些整合营销的最高阶段是
  • 做好政府网站建设工作360搜索引擎地址
  • wordpress自带相册seo方法培训
  • 网站上传空间下一步手机怎么搭建网站
  • mvc4做网站五最新的国际新闻
  • 拉萨网站建设企业培训课程设置
  • 建设电影网站电商seo什么意思
  • 余杭建设局网站站长seo综合查询
  • 濮阳哪里做网站深圳网站关键词
  • 焦作做网站哪家好百度推广官网入口
  • 软件工程师资格考试合肥seo服务商
  • 如何做网站顶级域名免费软文发布平台