当前位置: 首页 > news >正文

东莞建网站希爱力

东莞建网站,希爱力,电商网站建设的步骤,做网站需要学会哪些scikit-learn库中提供了包括分类、回归、聚类、降维等多种机器学习任务所需的常用数据集,方便进行实验和研究,它们主要被封装在sklearn.datasets中,本文对其中一些常用的数据集进行简单的介绍。 1.Iris(鸢尾花)数据集…

scikit-learn库中提供了包括分类、回归、聚类、降维等多种机器学习任务所需的常用数据集,方便进行实验和研究,它们主要被封装在sklearn.datasets中,本文对其中一些常用的数据集进行简单的介绍。

1.Iris(鸢尾花)数据集

该数据集包含150个鸢尾花样本,分为3个品种,每个品种50个样本。每个样本包含4个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。目的是使用这4个特征来对鸢尾花进行分类。scikit-learn中该数据集主要封装在sklearn.datasets.load_iris()中,使用方法如下:

from sklearn.datasets import load_iris# 加载数据集
iris = load_iris()# 打印数据集的描述
print(iris.DESCR)# 打印特征名
print(iris.feature_names)# 打印标签类别
print(iris.target_names)# 获取特征矩阵和目标向量
X = iris.data
y = iris.target

在上面的代码中,load_iris() 方法返回一个包含Iris数据集的对象 iris 。可以通过 iris.DESCR、iris.feature_names、iris.target_names 属性打印出数据集的描述、特征名、标签类别。然后,我们可以使用 iris.data 属性获取特征矩阵,使用 iris.target 属性获取标签向量。特征矩阵 X 是一个包含150个样本和4个特征的二维数组,目标向量 y 是一个包含150个元素的一维数组,每个元素表示对应样本的类别。

2.Wine(葡萄酒)数据集

Wine数据集也是一个分类问题的数据集,包含了三个葡萄酒品种(class)的13种化学特征,一共有178个样本。这个数据集是由美国加州大学欧文分校(UCI)提供的,最初是为了研究酒的化学成分和葡萄酒品种之间的关系而构建的。

Wine数据集中的三个葡萄酒品种分别是:

  • Class 1: 59个样本

  • Class 2: 71个样本

  • Class 3: 48个样本

13个化学特征分别是:

  • Alcohol(酒精)

  • Malic acid(苹果酸)

  • Ash(灰分)

  • Alcalinity of ash(灰的碱度)

  • Magnesium(镁)

  • Total phenols(总酚类化合物)

  • Flavanoids(类黄酮)

  • Nonflavanoid phenols(非类黄酮酚)

  • Proanthocyanins(原花青素)

  • Color intensity(颜色强度)

  • Hue(色调)

  • OD280/OD315 of diluted wines(稀释葡萄酒的OD280/OD315比值)

  • Proline(脯氨酸)

Wine数据集使用方法和鸢尾花数据集是类似的:

from sklearn.datasets import load_winewine = load_wine()
X, y = wine.data, wine.target

其中,X代表数据集中的13个特征,y代表数据集中的三个葡萄酒品种(class)。

3.Boston(波士顿房价)数据集

Boston数据集则是一个回归问题的经典数据集,包含了美国波士顿地区房屋的14个特征,一共有506个样本。这个数据集同样是由美国加州大学欧文分校(UCI)提供的,我们通常用来研究房屋价格和房屋特征之间的关系。

Boston数据集中的14个特征分别是:

  • CRIM:城镇人均犯罪率

  • ZN:占地面积超过25000平方英尺的住宅用地比例

  • INDUS:城镇非零售业务占地面积的比例

  • CHAS:查尔斯河虚拟变量(如果河流边界,则为1;否则为0)

  • NOX:一氧化氮浓度(每千万分之一)

  • RM:住宅平均房间数

  • AGE:1940年之前建造的自用房屋的比例

  • DIS:到波士顿五个就业中心的加权距离

  • RAD:放射性公路的可达性指数

  • TAX:每10,000美元的全值财产税率

  • PTRATIO:城镇师生比例

  • B:1000(Bk - 0.63)^ 2其中Bk是城镇黑人的比例

  • LSTAT:人口中地位低下者的百分比

  • MEDV:自住房屋房价中位数,以千美元计

该数据集使用方法如下:

from sklearn.datasets import load_bostonboston = load_boston()
X, y = boston.data, boston.target

其中,X代表数据集中的14个特征,y代表数据集中的自住房屋房价中位数的目标变量。

4.digits(手写数字)数据集

Digits数据集是一个手写数字识别数据集,它包含了1797张8x8像素的数字图像。每张图像都被转换为64维的特征向量,每个特征表示图像中的一个像素点。每张图像都被标记为0到9中的一个数字,表示图像所代表的数字。这个数据集非常适合用于机器学习中的图像分类问题。

在sklearn中,Digits数据集可以通过以下代码进行加载:

from sklearn.datasets import load_digitsdigits = load_digits()

按上述步骤执行完之后,digits对象同样包含两个主要属性:data和target。digits.data保存的是特征矩阵,它是一个1797x64的数组,每一行代表一张图像的特征向量。标签保存在digits.target中,它是一个长度为1797的一维数组,每个元素代表相应图像的数字标签。我们使用类似的方法可以导出特征和标签:

X, y = boston.data, boston.target
http://www.15wanjia.com/news/9087.html

相关文章:

  • 网站条形码如何做企业文化ppt
  • 广州旅游网站建设设计公司网络营销的方法
  • 手机游戏开服表时间表百度seo优化收费标准
  • 教做美食的网站百度推广的价格表
  • 苏州比较大的网站公司外贸建站平台
  • 淮安建设网站制作安仁网络推广
  • 做淘客网站用备案搜索关键词排名查询
  • 做网站的优势有哪些整合营销传播方案案例
  • wordpress文件下载插件win优化大师怎么样
  • 演出票务网站建设自动seo网站源码
  • 郑州的网站建设公司哪家好搜索引擎营销成功案例
  • 网站优化两大核心要素是什么有效的网站推广方式
  • 注册城乡规划师成绩查询网站关键词优化怎么做的
  • 企业型网站大数据培训包就业靠谱吗
  • 请人做网站注意事项百度爱采购优化
  • 电子商务网站建设教案公司广告推广方案
  • 上文明网站 做文明网民征文手游推广个人合作平台
  • 如何用css做网站站长之家域名查询排行
  • 做网站是买服务器还是买主机百度最怕哪个投诉电话
  • 链接网站怎么做郑州做网站的专业公司
  • 徐州人才网官方网站免费建设个人网站
  • 域名怎么绑定自己网站宁波怎么优化seo关键词
  • 深圳专业做网站的公司哪家好搜索引擎优化seo培训
  • 石家庄网站建设时光武汉seo网站优化排名
  • 网站如何做会员登录页面网站优化包括对什么优化
  • 网站怎么做吸引人百度搜索风云榜小说总榜
  • 福州市交通建设集团网站如何优化关键词提升相关度
  • 网站内容设计遵循的原则有怎么seo网站关键词优化
  • 株洲网站建设技术托管怎么样做推广
  • 东莞市网站建设分站指数基金怎么买才赚钱