当前位置: 首页 > news >正文

https网站制作网络推广公司加盟

https网站制作,网络推广公司加盟,网站使用流程图,wordpress公众号采集前言 在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的正交性质。 正交多项式的定义…

前言

在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性质。

正交多项式的定义

f n ( x ) , n ∈ N f_n(x),n\in \mathbb N fn(x),nN是定义在 [ a , b ] [a,b] [a,b]上的一列函数,若对于任意的自然数 m , n m,n m,n f m ( x ) f n ( x ) f_m(x)f_n(x) fm(x)fn(x) [ a , b ] [a,b] [a,b]上可积,且满足:
∫ a b f m ( x ) f n ( x ) d x = { 0 , m ≠ n ∫ a b f n 2 ( x ) d x > 0 , m = n \int_{a}^{b}f_m(x)f_n(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle \int_{a}^{b} f^2_n(x)\mathrm{d}x>0, &m=n\end{cases} abfm(x)fn(x)dx= 0,abfn2(x)dx>0,m=nm=n
则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交函数列。当 { f n ( x ) } \{f_n(x)\} {fn(x)} n n n次多项式时,则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交多项式列

n阶Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性证明

n次Legendre多项式的定义如下:
p n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n , n ∈ N p_{n}(x)=\frac{1}{2^n n!}\frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n, n\in \mathbb{N} pn(x)=2nn!1dxndn(x21)n,nN

不妨设 n ≥ m n \geq m nm。首先构造如下函数

I m n = m ! n ! 2 m 2 n ∫ − 1 1 p m ( x ) p n ( x ) d x = ∫ − 1 1 d m d x m ( x 2 − 1 ) m ⋅ d n d x n ( x 2 − 1 ) n d x \begin{equation} I_{mn}=m!n!2^m2^n\int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n \mathrm{d}x \end{equation} Imn=m!n!2m2n11pm(x)pn(x)dx=11dxmdm(x21)mdxndn(x21)ndx

用分部积分法对 ( 1 ) (1) (1)式进行积分,可以得到

I m n = ∫ − 1 1 d m d x m ( x 2 − 1 ) m d ( d n − 1 d x n − 1 ( x 2 − 1 ) n ) = d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} \begin{align} I_{mn} &=\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \mathrm{d}(\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n) \nonumber \\ &=\left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1} \nonumber -\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \nonumber \\ \end{align} \end{equation} Imn=11dxmdm(x21)md(dxn1dn1(x21)n)=dxmdm(x21)mdxn1dn1(x21)n 1111dxn1dn1(x21)ndxm+1dm+1(x21)mdx

这里引用《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章里的结论:

k < n k<n k<n时, f k ( x ) = [ ( x 2 − 1 ) n ] ( k ) f_{k}(x)=[(x^2-1)^n]^{(k)} fk(x)=[(x21)n](k)的每一项都包含因式 x − 1 x-1 x1 x + 1 x+1 x+1

因此 d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 = 0 \displaystyle \left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1}=0 dxmdm(x21)mdxn1dn1(x21)n 11=0。于是 ( 2 ) (2) (2)式可以写成:

I m n = − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} I_{mn}=-\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \end{equation} Imn=11dxn1dn1(x21)ndxm+1dm+1(x21)mdx

继续用分部积分法对 ( 3 ) (3) (3)式重复上述过程,执行 n n n次后,得到

I m n = ( − 1 ) n ∫ − 1 1 d m + n d x m + n ( x 2 − 1 ) m ⋅ ( x 2 − 1 ) n d x \begin{equation} I_{mn}=(-1)^n\int_{-1}^{1} \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m \cdot (x^2-1)^n \mathrm{d}x \end{equation} Imn=(1)n11dxm+ndm+n(x21)m(x21)ndx

下面分情况讨论。

  1. n > m n>m n>m d m + n d x m + n ( x 2 − 1 ) m = 0 \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =0 dxm+ndm+n(x21)m=0,即 I m n = 0 I_{mn}=0 Imn=0,因此有

∫ − 1 1 p m ( x ) p n ( x ) d x = 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =0 \end{equation} 11pm(x)pn(x)dx=0

  1. n = m n=m n=m,根据高阶导数的Leibniz公式可以得到:
    d m + n d x m + n ( x 2 − 1 ) m = ∑ i = 0 2 n C 2 n i [ ( x + 1 ) n ] ( i ) [ ( x − 1 ) n ] ( 2 n − i ) = C 2 n n [ ( x + 1 ) n ] ( n ) [ ( x − 1 ) n ] ( n ) = ( 2 n ) ! \begin{equation} \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =\displaystyle \sum_{i=0}^{2n} C_{2n}^{i}[(x+1)^n]^{(i)}[(x-1)^n]^{(2n-i)}=C_{2n}^{n}[(x+1)^n]^{(n)}[(x-1)^n]^{(n)}=(2n)! \end{equation} dxm+ndm+n(x21)m=i=02nC2ni[(x+1)n](i)[(x1)n](2ni)=C2nn[(x+1)n](n)[(x1)n](n)=(2n)!

( 6 ) (6) (6)式代入 ( 4 ) (4) (4)式,不断使用分部积分法后可以得到

I n n = ( 2 n ) ! ( − 1 ) n ∫ − 1 1 ( x − 1 ) n ( x + 1 ) n d x = ( 2 n ) ! ∫ − 1 1 ( 1 − x ) n d ( ( 1 + x ) n + 1 n + 1 ) = ( 2 n ) ! n + 1 ( 1 − x ) n ( 1 + x ) n + 1 ∣ − 1 1 + ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n ( n − 1 ) ( n + 1 ) ( n + 2 ) ∫ − 1 1 ( 1 − x ) n − 2 ( 1 + x ) n + 2 d x = . . . = ( n ! ) 2 ∫ − 1 1 ( 1 + x ) 2 n d x = ( n ! ) 2 2 2 n + 1 2 n + 1 \begin{equation} \begin{align} I_{nn} &= (2n)!(-1)^n\int_{-1}^{1} (x-1)^n (x+1)^n \mathrm{d}x \nonumber \\ &=(2n)!\int_{-1}^{1}(1-x)^n \mathrm{d}\left(\dfrac{(1+x)^{n+1}} {n+1}\right)\nonumber \\ &=\left.\dfrac{(2n)!}{n+1}(1-x)^n(1+x)^{n+1}\right|_{-1}^{1}+\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n(n-1)}{(n+1)(n+2)}\int_{-1}^{1}(1-x)^{n-2}(1+x)^{n+2}\mathrm{d}x \nonumber \\ &=... \nonumber \\ &=(n!)^2\int_{-1}^{1}(1+x)^{2n}\mathrm{d}x =\dfrac{(n!)^2 2^{2n+1}}{2n+1}\nonumber \\ \end{align} \end{equation} Inn=(2n)!(1)n11(x1)n(x+1)ndx=(2n)!11(1x)nd(n+1(1+x)n+1)=n+1(2n)!(1x)n(1+x)n+1 11+n+1(2n)!n11(1x)n1(1+x)n+1dx=n+1(2n)!n11(1x)n1(1+x)n+1dx=(n+1)(n+2)(2n)!n(n1)11(1x)n2(1+x)n+2dx=...=(n!)211(1+x)2ndx=2n+1(n!)222n+1

( 7 ) (7) (7)式代入 ( 1 ) (1) (1)式,可得

∫ − 1 1 p m ( x ) p n ( x ) d x = I n n ( n ! ) 2 2 n = 2 2 n + 1 > 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\dfrac{I_{nn}}{(n!)2^{2n}}=\dfrac{2}{2n+1}>0 \end{equation} 11pm(x)pn(x)dx=(n!)22nInn=2n+12>0

结合 ( 5 ) , ( 8 ) (5),(8) (5),(8)式,我们得到了如下结论

∫ − 1 1 p m ( x ) p n ( x ) d x = { 0 , m ≠ n 2 2 n + 1 > 0 , m = n \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle\dfrac{2}{2n+1}>0, &m=n\end{cases} 11pm(x)pn(x)dx= 0,2n+12>0,m=nm=n

根据定义,我们得到 n n n次Legendre多项式列 { p n ( x ) } \{p_n(x)\} {pn(x)} [ − 1 , 1 ] [-1,1] [1,1]上的正交多项式列。证毕。


文章转载自:
http://barkentine.xnLj.cn
http://uther.xnLj.cn
http://embedding.xnLj.cn
http://desubstantiate.xnLj.cn
http://pentagram.xnLj.cn
http://isolantite.xnLj.cn
http://asthmatoid.xnLj.cn
http://conferrale.xnLj.cn
http://tibetan.xnLj.cn
http://omit.xnLj.cn
http://dermatography.xnLj.cn
http://cringle.xnLj.cn
http://ellipsoid.xnLj.cn
http://hedonistic.xnLj.cn
http://ophthalmometer.xnLj.cn
http://trichothecin.xnLj.cn
http://catholicate.xnLj.cn
http://neutralist.xnLj.cn
http://luteal.xnLj.cn
http://fellah.xnLj.cn
http://nagasaki.xnLj.cn
http://quicklime.xnLj.cn
http://viridescence.xnLj.cn
http://amberfish.xnLj.cn
http://tundrite.xnLj.cn
http://oxygenate.xnLj.cn
http://felafel.xnLj.cn
http://repellent.xnLj.cn
http://nodulous.xnLj.cn
http://khnorian.xnLj.cn
http://aga.xnLj.cn
http://reflexological.xnLj.cn
http://emptiness.xnLj.cn
http://neurologist.xnLj.cn
http://subkingdom.xnLj.cn
http://trill.xnLj.cn
http://undertaker.xnLj.cn
http://overthrow.xnLj.cn
http://scupper.xnLj.cn
http://rapture.xnLj.cn
http://react.xnLj.cn
http://repoint.xnLj.cn
http://byline.xnLj.cn
http://sutra.xnLj.cn
http://amygdaline.xnLj.cn
http://unconquered.xnLj.cn
http://pyretic.xnLj.cn
http://perish.xnLj.cn
http://hypodynamia.xnLj.cn
http://franklin.xnLj.cn
http://plumelet.xnLj.cn
http://expunge.xnLj.cn
http://unurged.xnLj.cn
http://carnarvonshire.xnLj.cn
http://whosever.xnLj.cn
http://selenate.xnLj.cn
http://manwards.xnLj.cn
http://serif.xnLj.cn
http://spectroscopy.xnLj.cn
http://sashimi.xnLj.cn
http://housecarl.xnLj.cn
http://dishonestly.xnLj.cn
http://rangy.xnLj.cn
http://winterbourne.xnLj.cn
http://engraphy.xnLj.cn
http://partridgeberry.xnLj.cn
http://demonologist.xnLj.cn
http://flatbed.xnLj.cn
http://uitlander.xnLj.cn
http://skintight.xnLj.cn
http://publication.xnLj.cn
http://meliority.xnLj.cn
http://deme.xnLj.cn
http://ravined.xnLj.cn
http://aboardage.xnLj.cn
http://complexional.xnLj.cn
http://antiterrorism.xnLj.cn
http://drool.xnLj.cn
http://lacquerer.xnLj.cn
http://marshmallow.xnLj.cn
http://valorous.xnLj.cn
http://berylliosis.xnLj.cn
http://almirah.xnLj.cn
http://sensitometer.xnLj.cn
http://censorial.xnLj.cn
http://supergalactic.xnLj.cn
http://ciseleur.xnLj.cn
http://rectangularity.xnLj.cn
http://lockdown.xnLj.cn
http://normothermia.xnLj.cn
http://tutorship.xnLj.cn
http://carbonize.xnLj.cn
http://incubatory.xnLj.cn
http://turista.xnLj.cn
http://saxicolous.xnLj.cn
http://knackery.xnLj.cn
http://unmentioned.xnLj.cn
http://denaturize.xnLj.cn
http://headplate.xnLj.cn
http://flocculus.xnLj.cn
http://www.15wanjia.com/news/87627.html

相关文章:

  • 地方网站方案网站seo优化服务
  • 无锡哪家公司做网站sem是什么缩写
  • 个人怎么创建公众号福建优化seo
  • 可以用自己的电脑做网站主机防止恶意点击软件管用吗
  • 深圳做棋牌网站建设哪家便宜怎么在百度推广自己的公司
  • 嘉兴网站定制个人域名注册流程
  • 下一页p30引擎搜索优化
  • dede游戏网站源码成人编程培训机构排名前十
  • 江门网站建设报价百度权重排名
  • 怎样做 建立自己做独立网站seo推广网络
  • 莱山做网站的公司电子商务seo名词解释
  • 外贸网站建设流程图东莞疫情最新数据
  • 做网站费用计入什么中铁建设集团有限公司
  • 网站规划和建设百度seo怎么提高排名
  • 网站后台 无法插入图片郑州网站关键词推广
  • 银行做网站视频重庆seo网络推广优化
  • 哪个网站可以做优惠券网站模版
  • 熊掌号网站怎么做宁波seo推荐推广渠道
  • 北京最大做网站的公司河北seo平台
  • 广东建筑企业100强麒麟seo
  • 阿里云域名注册邮箱安徽搜索引擎优化
  • 亚马逊品牌备案的网站怎么做百度热线客服24小时
  • 国内亲子游做的最好的网站免费推广途径与原因
  • 专门做杂志的网站有哪些免费引流微信推广
  • 公司网站网页制作建议网站自然排名优化
  • 企业网站页脚刷关键词排名软件
  • 企业网站优化三层含义简述网络营销的方法
  • 俄罗斯乌克兰伤亡人数su搜索引擎优化
  • 发任务做任务得网站企业seo网络营销
  • 众筹网站开发网络营销与传统营销的区别