当前位置: 首页 > news >正文

菜鸟教程网站怎么做百度联盟广告点击一次收益

菜鸟教程网站怎么做,百度联盟广告点击一次收益,响应式网站 企业模版,营销型网站建设团队文章目录 数据无量纲化preprocessing.MinMaxScaler(归一化)导库归一化另一种写法将归一化的结果逆转 preprocessing.StandardScaler(标准化)导库实例化查看属性查看结果逆标准化 缺失值impute.SimpleImputer另一种填充写法 处理分类型特征:编…

文章目录

  • 数据无量纲化
    • preprocessing.MinMaxScaler(归一化)
      • 导库
      • 归一化
      • 另一种写法
      • 将归一化的结果逆转
    • preprocessing.StandardScaler(标准化)
      • 导库
      • 实例化
      • 查看属性
      • 查看结果
      • 逆标准化
  • 缺失值
    • impute.SimpleImputer
    • 另一种填充写法
  • 处理分类型特征:编码与哑变量
    • preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值
    • preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值
    • preprocessing.OneHotEncoder:独热编码,创建哑变量
  • 处理连续性特征:二值化与分段
    • sklearn.preprocessing.Binarizer
    • preprocessing.KBinsDiscretizer

数据无量纲化

2.png

preprocessing.MinMaxScaler(归一化)

3.png

导库

from sklearn.preprocessing import MinMaxScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

归一化

# 实现归一化
scaler = MinMaxScaler() #实例化
scaler = scaler.fit(data) #在这里本质是生成min(x), 和max(x)
result = scaler.transform(data) # 通过接口导出结果
result

另一种写法

scaler = MinMaxScaler() #实例化
result_ = scaler.fit_transform(data) # 训练和导出结果一步达成
result_

4.png
5.png

将归一化的结果逆转

scaler.inverse_transform(result) # 将归一化后的结果逆转

6.png
7.png
用numpy实现归一化

import numpy as np
X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
# 归一化
X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_nor

8.png
逆转

X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)
X_returned

9.png

preprocessing.StandardScaler(标准化)

10.png

导库

from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

实例化

scaler = StandardScaler() # 实例化
scaler.fit(data) # 本质是生成均值和方差

查看属性

scaler.mean_ #查看均值的属性mean_
scaler.var_ # 查看方差的属性var_

3.png

查看结果

x_std = scaler.fit_transform(data)
x_std

4.png

5.png

逆标准化

return_x = scaler.inverse_transform(x_std)
return_x

6.png
7.png

关于如何选择这两种无量纲化的方式要具体问题具体分析,但是我们一般在机器学习算法中选择标准化,这就好比我们能让他符合标准正态分布为什么不呢?而且MinMaxScaler对异常值很敏感,如果有一个很大的值会把其他值压缩到一个很小的区间内

8.png

缺失值

3.png

impute.SimpleImputer

4.png
导库

import pandas as pd
data = pd.read_csv(r"C:\Users\cxy\OneDrive\桌面\【机器学习】菜菜的sklearn课堂(1-12全课)\03数据预处理和特征工程\Narrativedata.csv",index_col=0 # 告诉python第0列是索引不是属性)
data.info()

提取出我们要填补的列

Age = data.loc[:, 'Age'].values.reshape(-1, 1) # reshape()能够将数据升维的方法

建模

from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer() #实例化默认均值填补
imp_median = SimpleImputer(strategy='median') # 用中位数填补
imp_0 = SimpleImputer(strategy='constant', fill_value=0) # 用0填补
imp_mean = imp_mean.fit_transform(Age)
imp_median = imp_median.fit_transform(Age)
imp_0 = imp_0.fit_transform(Age)

8.png
9.png
用均值填补的结果
5.png
用中位数填补的结果
6.png
用0填补的结果
7.png
在实际中我们会直接把那两个缺失的数据直接删除

# 使用众数填补空缺值
Embarked = data.loc[:, 'Embarked'].values.reshape(-1, 1) # reshape()能够将数据升维的方法
imp_mode = SimpleImputer(strategy='most_frequent')
imp_mode = imp_mode.fit_transform(Embarked)
data.loc[:, "Embarked"] = imp_mode

另一种填充写法

导库

import pandas as pd
data_ = pd.read_csv(r"C:\Users\cxy\OneDrive\桌面\【机器学习】菜菜的sklearn课堂(1-12全课)\03数据预处理和特征工程\Narrativedata.csv",index_col=0 # 告诉python第0列是索引不是属性)
data_.head()

填补

data_.loc[:, 'Age'] = data_.loc[:, 'Age'].fillna(data_.loc[:, 'Age'].median()) # fillna()在DataFrame里面直接进行填补

3.png
删除缺失值

data_.dropna(axis=0, inplace=True)
#axis=0表示删除所有有缺失值的行。inplace表示覆盖原数据,即在原数据上进行修改,当inplace = False时,表示会产生一个复制的数据

4.png

处理分类型特征:编码与哑变量

5.png

preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值

from sklearn.preprocessing import LabelEncoder
y = data.iloc[:, -1] # 要输入的时标签不是特征矩阵,允许一维
le = LabelEncoder()
le = le.fit_transform(y)
data.iloc[:,-1] = label

preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值

from sklearn.preprocessing import OrdinalEncoder
data_ = data.copy()
OrdinalEncoder().fit(data.iloc[:, 1:-1]).categories_
data.iloc[:, 1:-1] = OrdinalEncoder().fit_transform(data.iloc[:, 1:-1])
data.head()

6.png

preprocessing.OneHotEncoder:独热编码,创建哑变量

7.png
8.png

from sklearn.preprocessing import OneHotEncoder
X = data.iloc[:1:-1]
result = OneHotEncoder(categories='auto').fit_transform(X).toarray() # 使用autopython会自己帮我们确定这个参数应该填什么
result

10.png
9.png
11.png
我们如何把我们新生成的哑变量放回去?
先将哑变量直接连在表的右边

newdata = pd.concat([data, pd.DataFrame(result)], axis=1)

12.png
将不需要的列删除

newdata.drop(["Sex", "Embarked"], axis=1, inplace=True)
newdata.columns = ["Age", "Survived", "Female", "Male", "Embarked_C", "Embarked_Q", "Embarked_S"]
newdata.head()

13.png
14.png
15.png
16.png

处理连续性特征:二值化与分段

sklearn.preprocessing.Binarizer

3.png

from sklearn.preprocessing import Binarizer
X = data_2.iloc[:,0].values.reshape(-1,1)
transformer = Binarizer(threshold=30).fit_transform(X)

preprocessing.KBinsDiscretizer

4.png

from sklearn.preprocessing import KBinsDiscretizer
X = data.iloc[:, 0].values.reshape(-1, 1)
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X)
http://www.15wanjia.com/news/8440.html

相关文章:

  • 全国加盟网站建设最有效的网络推广方式和策略
  • 网页制作公司 软件seo视频教学网站
  • 滨州北京网站建设价格低外贸网站如何推广优化
  • 网站专题教程广州网站优化服务
  • 网站支付模块百度统计手机app
  • 电话约建设网站 客户深圳高端seo公司助力企业
  • 郝友做的网站整站排名优化品牌
  • 政府网站建设 强化考评问责北京网站sem、seo
  • 邢台网站制作公司网推平台有哪些比较好
  • 上海网站建设v芯ee8888e渠道网络
  • 新余网站网站建设网站备案
  • 日新月异网站建设成都网站推广经理
  • no7wordpressseo 视频
  • 做室内设计的网站有哪些百度浏览器
  • 那些网站可以上传自己做的视频宁波seo快速优化课程
  • 网站建设规划书范文500字下载谷歌浏览器
  • 深圳的建站公司重庆网站关键词排名
  • 域名网站是什么seo算法是什么
  • wordpress迁移到githubseo的搜索排名影响因素主要有
  • 百度广州分公司是外包吗济南seo整站优化招商电话
  • 网站开发与制作中期报告哈尔滨seo推广优化
  • 天马网络网站深圳seo优化推广公司
  • 沈阳做网站客户多吗太原seo排名
  • wordpress 文章侧边栏优化方案
  • 小学学校网站建设方案湖南网站建设效果
  • 网站托管公司网络推广好做吗
  • 哪个网站可以做担保交易平台球队积分排名
  • iis7添加网站seo关键词排名实用软件
  • 如何做企业网站小程序站长之家权重查询
  • 用vue.js做网站的好处高端大气网站建设