当前位置: 首页 > news >正文

用jsp做的网站app推广拉新一手渠道代理

用jsp做的网站,app推广拉新一手渠道代理,深圳市建工集团,怎样做酒店网站ppt模板一、概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,簇集的划定完全由样本的聚集程度决定。聚集程度不足以构成簇落的那些样本视为噪声点,因此DBSCAN聚类的方式也可以用于异常点的检测。 二、算法…

一、概述

  DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,簇集的划定完全由样本的聚集程度决定。聚集程度不足以构成簇落的那些样本视为噪声点,因此DBSCAN聚类的方式也可以用于异常点的检测。

二、算法原理

1.基本原理

  算法的关键在于样本的‘聚集程度’,这个程度的刻画可以由聚集半径和最小聚集数两个参数来描述。如果一个样本聚集半径领域内的样本数达到了最小聚集数,那么它所在区域就是密集的,就可以围绕该样本生成簇落,这样的样本被称为核心点。如果一个样本在某个核心点的聚集半径领域内,但其本身又不是核心点,则被称为边界点;既不是核心点也不是边界点的样本即为噪声点。其中,最小聚集数通常由经验指定,一般是数据维数+1或者数据维数的2倍。

  通俗地讲,核心点就是构成一个簇落的核心成员;边界点就是构成一个簇落的非核心成员,它们分布于簇落的边界区域;噪声点是无法归属在任何一个簇集的游离的异常样本。如图所示。
在这里插入图片描述
  对于聚成的簇集,这里有三个相关的概念:密度直达,密度可达,密度相连。

密度直达: 对一个核心点p,它的聚集半径领域内的有点q,那么称p到q密度直达。密度直达不具有对称性。

密度可达: 有核心点p1,p2,…,pn,非核心点q,如果pi到pi+1(i=1,2,…,n-1)是密度直达的,pn到q是密度直达的,那么称核心点pi(i=1,2,…,n)到其他的点是密度可达的。密度可达不具有对称性。

密度相连: 如果有核心点P,到两个点A和B都密度可达,那么称A和B密度相连。密度相连具有对称性。

  简单地讲,核心点到其半径邻域内的点是密度直达的;核心点到其同簇集内的点是密度可达的;同一个簇集里的成员间是密度相连的。

在这里插入图片描述
  由定义易知,密度直达一定密度可达,密度可达一定密度相连。密度相连就是对聚成的一个簇集最直接的描述。

2.算法描述

输入: 样本集D,聚集半径r,最小聚集数MinPts;
输出: 簇集C1,C2,…,Cn,噪声集O.
根据样本聚集程度,传播式地划定聚类簇,并将不属于任何一个簇的样本划入噪声集合。

(1)随机搜寻一个核心点p,

S1.从样本集D中随机选择一个未归入任何集合的且未被标记的样本对象p
S2.计算p的r邻域大小 ∣ N r ( p ) ∣ \left| N_r(p) \right| Nr(p)
∣ N r ( p ) ∣ ≥ M i n P t s \left| N_r(p) \right|\geq MinPts Nr(p)MinPts ,则标记为核心点;否则,标记为非核心点,并选择其他的点进行判别.
S3.重复上面的步骤,直至找到一个核心点;若未找到,将未归集的样本划入噪声集O.

(2)在核心点p处建立簇C,将r邻域内所有的点加入簇C.

(3)对邻域内所有未被标记的点迭代式进行考察,扩展簇集.

若一个邻域点q为核心点,则将它领域内未归入集合的点加入簇C中.

(4)重复以上步骤,直至所有样本划入了指定集合;

(5)输出簇集C1,C2,…,Cn和噪声集合O。

3.优缺点

优势:
  1.可以发现任意形状的簇,适用于非凸数据集;
  2.可以进行异常检测;
  3.不需要指定簇数,根据样本的密集程度适应性地聚集。

不足:
  1.当样本集密度不均匀,不同簇中的平均密度相差较大时,效果较差;
  2.聚集半径和最小聚集数两个参数需人工指定。

三、示例

  假设二维空间中有下列样本,坐标为

(1,2),(1,3),(3,1),(2,2),(9,8),(8,9),(9,9),(18,18)

  由DBSCAN算法完成聚类操作。

过程演算:
  由经验指定参数聚集半径r=2,最小聚集数MinPts=3。

(1)随机搜寻一个核心点,若不存在,返回噪声集合。
  考察点(1,2),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(1,2)为核心点。

(2)在核心点(1,2)处建立簇C1,原始簇成员为r邻域内样本:(1,2)、(1,3)、(2,2)。

(3)对簇落C1成员迭代式进行考察,扩展簇集。
  先考察(1,3),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(1,3)为核心点,它邻域内的样本均已在簇C1中,无需进行操作。
  再考察(2,2),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共四个样本点,达到了MinPts数,因此(2,2)为核心点,将它领域内尚未归入任何一个簇落的点(3,1)加入簇C1。

  再考察(3,1),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共两个样本点,因此(3,1)是非核心点。

  考察结束,簇集C1扩展完毕。

(4)在其余未归簇的样本点中搜寻一个核心点,若不存在,返回噪声集合。
  考察点(9,8),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(9,8)为核心点。

(5)在核心点(9,8)处建立簇C2,原始簇成员为r邻域内样本:(9,8)、(8,9)、(9,9)。

(6)对簇落C2成员迭代式进行考察,扩展簇集。
  先考察(8,9),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(8,9)为核心点,它邻域内的样本均已在簇C2中,无需进行操作。
再考察(9,9),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共三个样本点,达到了MinPts数,因此(9,9)为核心点。它邻域内的样本均已在簇C2中,无需进行操作。
考察结束,簇集C2扩展完毕。

(7)在其余未归簇的样本点中搜寻一个核心点,若不存在,返回噪声集合。
  其余未归簇的样本点集合为{(18,18)},考察(18,18),它到各点的距离分别为
在这里插入图片描述
  在它的r邻域内,包括了自身在内的共一个样本点,未达到MinPts数,因此(18,18)为非核心点。其余未归簇的样本中不存在核心点,因此归入噪声集O={(18,18)}。

(8)输出聚类结果
  簇类C1:{(1,2),(1,3),(3,1),(2,2)}
  簇类C2:{(9,8),(8,9),(9,9)}
  噪声集O:{(18,18)}

四、Python实现

示例的Python实现。

'''
功能:用python实现DBSCAN聚类算法。
'''
from sklearn.cluster import DBSCAN
import numpy as np
import matplotlib.pyplot as plt# 初始化数据
data = np.array([(1,2),(1,3),(3,1),(2,2),(9,8),(8,9),(9,9),(18,18)])# 定义DBSCAN模型
dbscan = DBSCAN(eps=2,min_samples=3)# 计算数据,获取标签
labels = dbscan.fit_predict(data)# 定义颜色列表
colors = ['b','r','c']
T = [colors[i] for i in labels]# 输出簇类
print('\n 聚类结果: \n')
ue = np.unique(labels)
for i in range(ue.size):CLS = []for k in range(labels.size):if labels[k] == ue[i]:CLS.append(tuple(data[k]))print('簇类{}:'.format(ue[i]),CLS)# 结果可视化
plt.figure()
plt.scatter(data[:,0],data[:,1],c=T,alpha=0.5)  # 绘制数据点
plt.show()

运行结果:
在这里插入图片描述
在这里插入图片描述


End.


资源打包下载:
https://download.csdn.net/download/Albert201605/88152784?spm=1001.2014.3001.5503

http://www.15wanjia.com/news/7997.html

相关文章:

  • 政府网站建设研究观点江苏网站建设制作
  • 网页设计代码含jsgoogleseo推广
  • html5支持最好的浏览器郑州搜索引擎优化
  • 临安做网站的公司站长工具外链查询
  • 移动网站开发 公众号苏州网站关键字优化
  • 经营网站建设中国新闻今日头条
  • 淘宝客网站主机买卖友情链接
  • 电气毕业设计代做网站搜索引擎哪个好
  • 郑州做网站报价站域名多少钱舆情信息怎么写
  • 孝感 商务 网站建设网络推广怎么学
  • 互站源码交易平台手机网站建设公司
  • 网站建设学习什么网站seo查询
  • 北京双井网站建设江苏seo外包
  • java网站开发视频百度快照什么意思
  • wordpress企业网站建设如何做企业产品推广
  • 金融行业做网站网络营销的主要方式
  • 网站如何做映射郑州百度搜索优化
  • h5高端网站开发正规营销培训
  • 如何粘贴网站统计代码网站流量统计分析
  • WordPress如何修改固定链接windows优化大师电脑版
  • 平台网站模板 优帮云重庆seo排名
  • 广州专业的网站制作高端网站建设深圳
  • 亚马逊雨林面积有多大aso优化方案
  • 男人不知本网站 枉做yandex搜索引擎
  • 做淘宝客网站需要做后台吗网络优化大师app
  • 设计师服务平台素材下载企业网站怎么优化
  • 做ae动图的网站360推广怎么收费
  • 网站移动端是什么问题百度seo优化是什么
  • 成都有没有做网站建设的网络推广哪个平台效果最好
  • 建网站去哪里备案怎么免费搭建自己的网站