当前位置: 首页 > news >正文

大红门网站建设2020国内搜索引擎排行榜

大红门网站建设,2020国内搜索引擎排行榜,怎么做一家网站,上海大型网站制作B-V算法 (1) 问题描述 给定布尔函数f:{0,1}n→0,1f:{\left\{ {0,1} \right\}^n} \to{0,1}f:{0,1}n→0,1, 函数fff的值是由输入比特串xxx和确定的比特串sss做模2意义下的内积:f(x)x⋅s(mod2),f\left( x \right) x \cdot s\left( {\bmod 2} \right),f(x)x⋅s(mod2),…

B-V算法

(1) 问题描述

  给定布尔函数f:{0,1}n→0,1f:{\left\{ {0,1} \right\}^n} \to{0,1}f:{0,1}n0,1, 函数fff的值是由输入比特串xxx和确定的比特串sss做模2意义下的内积:f(x)=x⋅s(mod2),f\left( x \right) = x \cdot s\left( {\bmod 2} \right),f(x)=xs(mod2),其中x⋅s=∑i(xi⊕si)x \cdot s = \sum\limits_i {\left( {{x_i} \oplus {s_i}} \right)} xs=i(xisi)
前提:可以调用访问函数fff的黑盒
问题:计算出比特串sss

经典意义下
  依次输入比特串xxx:
00...0000...0100...10...01...0010...00\begin{array}{l} 00...00\\ 00...01\\ 00...10\\ ...\\ 01...00\\ 10...00 \end{array}00...0000...0100...10...01...0010...00
对于第iii次输入:
000100...00→x⋅s(mod2)=si000100...00 \to x \cdot s\left( {\bmod 2} \right) = {s_i}000100...00xs(mod2)=si
重复该流程nnn次,即可确定比特串sss,上述方法的查询复杂度为O(n)O\left( n \right)O(n)

(2) 量子算法核心思路:

基础知识:H⊗n∣s⟩=12n2∑x(−1)s⋅x∣x⟩H^{\otimes n}|s\rangle=\frac{1}{2^{\frac{n}{2}}} \sum_{x}(-1)^{s \cdot x}|x\rangleHns=22n1x(1)sxx

Step1:制备初始量子比特∣Φ0⟩=∣0⟩⊗n\left| {{\Phi _0}} \right\rangle ={\left| 0 \right\rangle ^{ \otimes n}}Φ0=0n
Step2:作用H⊗n{H^{ \otimes n}}Hn,得到量子态∣Φ0⟩=12n2∑x∣x⟩\left| {{\Phi _0}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } Φ0=22n1xx
Step3:作用量子黑盒Of{O_f}OfOf:∣x⟩→(−1)x⋅s∣x⟩{O_f}:\left| x \right\rangle \to {\left( { - 1} \right)^{x \cdot s}}\left| x \right\rangleOf:x(1)xsx,此时系统状态为∣Φ1⟩=12n2∑x(−1)s⋅x∣x⟩\left| {{\Phi _1}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {{{\left( { - 1} \right)}^{s \cdot x}}|x\rangle }Φ1=22n1x(1)sxx
Step4:作用H⊗n{H^{ \otimes n}}Hn,系统状态变为∣s⟩|s\rangles
此时测量量子系统即可得到比特串sss,该算法的查询复杂为O(1)O(1)O(1)

备注:上述量子黑盒OfO_fOf的实现方法与Deutsh算法相似,具体方法如下

在这里插入图片描述

(1) 制备量子态∣Ψ0⟩=∣0⟩n∣1⟩\left| {{\Psi _0}} \right\rangle = {\left| 0 \right\rangle ^n}\left| 1 \right\rangleΨ0=0n1
(2) 作用H⊗n{H^{ \otimes n}}Hn,量子系统变为∣Ψ1⟩=12n2∑x∣x⟩∣−⟩\left| {{\Psi _1}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } \left| - \right\rangleΨ1=22n1xx
(3) 作用Uf:∣x⟩∣y⟩→∣x⟩∣y⊕f(x)⟩U_f:\left|x\right\rangle\left|y\right\rangle \to\left|x\right\rangle\left|y\oplus f\left( x \right)\right\rangleUfxyxyf(x),量子系统演变为∣Ψ2⟩=12n2∑x∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)\left| {{\Psi _2}} \right\rangle = \frac{1}{{{2^{\frac{n}{2}}}}}\sum\limits_x {|x\rangle } \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right)Ψ2=22n1xx2211(0f(x)1f(x))
f(x)=0{f\left( x \right)}=0f(x)=0时,∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩1212(∣0⟩−∣1⟩)=∣x⟩∣−⟩\left|x\right\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right) = |x\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| 0 \right\rangle - \left| 1 \right\rangle } \right) = |x\rangle \left| - \right\ranglex2211(0f(x)1f(x))=x2211(01)=x
f(x)=1{f\left( x \right)}=1f(x)=1时,∣x⟩1212(∣0⊕f(x)⟩−∣1⊕f(x)⟩)=∣x⟩1212(∣0⟩−∣1⟩)=−∣x⟩∣−⟩\left|x\right\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| {0 \oplus f\left( x \right)} \right\rangle - \left| {1 \oplus f\left( x \right)} \right\rangle } \right) = |x\rangle \frac{1}{{{2^{\frac{1}{2}}}}}\left( {\left| 0 \right\rangle - \left| 1 \right\rangle } \right) = -|x\rangle \left| - \right\ranglex2211(0f(x)1f(x))=x2211(01)=x
不难发现UfU_fUf的作用为:∣x⟩∣−⟩→(−1)f(x)∣x⟩∣−⟩=(−1)s⋅x∣x⟩∣−⟩|x\rangle \left| - \right\rangle \to {\left( { - 1} \right)^{f\left( x \right)}}|x\rangle \left| - \right\rangle={\left( { - 1} \right)^{s \cdot x}}|x\rangle \left| - \right\ranglex(1)f(x)x=(1)sxx
舍弃掉最后一个量子比特(辅助比特)∣−⟩\left| - \right\rangle,即实现了Step3中的黑盒OfO_fOf

参考资料
[1] Bernstein-Vazirani Algorithm 学习笔记
[2] 量子计算【算法篇】第7章 Deutsch-Josza算法及实现
(3) 由 Fourier Sampling 到 Deutsch-Jozsa Algorithm & Bernstein-Vazirani Algorithm


文章转载自:
http://antituberculous.mcjp.cn
http://appraisive.mcjp.cn
http://sublibrarian.mcjp.cn
http://speechmaker.mcjp.cn
http://prepaid.mcjp.cn
http://triploid.mcjp.cn
http://microspectrophotometer.mcjp.cn
http://pawnbroking.mcjp.cn
http://officiate.mcjp.cn
http://lincolnite.mcjp.cn
http://hornpipe.mcjp.cn
http://rigger.mcjp.cn
http://translucid.mcjp.cn
http://haligonian.mcjp.cn
http://homogony.mcjp.cn
http://hypophysiotrophic.mcjp.cn
http://pectin.mcjp.cn
http://exceed.mcjp.cn
http://mooncalf.mcjp.cn
http://reconcentrate.mcjp.cn
http://junc.mcjp.cn
http://brinell.mcjp.cn
http://gotha.mcjp.cn
http://affectivity.mcjp.cn
http://lights.mcjp.cn
http://polysorbate.mcjp.cn
http://bipectinate.mcjp.cn
http://placate.mcjp.cn
http://childrenese.mcjp.cn
http://parthenospore.mcjp.cn
http://varuna.mcjp.cn
http://reinforce.mcjp.cn
http://housefront.mcjp.cn
http://gawain.mcjp.cn
http://crrus.mcjp.cn
http://conium.mcjp.cn
http://anisometric.mcjp.cn
http://forehold.mcjp.cn
http://kerbela.mcjp.cn
http://superhigh.mcjp.cn
http://pajamas.mcjp.cn
http://homologous.mcjp.cn
http://conscript.mcjp.cn
http://filiferous.mcjp.cn
http://lionhood.mcjp.cn
http://teachy.mcjp.cn
http://meeken.mcjp.cn
http://petrification.mcjp.cn
http://slavophobe.mcjp.cn
http://woodprint.mcjp.cn
http://iridectome.mcjp.cn
http://attired.mcjp.cn
http://sensorial.mcjp.cn
http://lerp.mcjp.cn
http://animatism.mcjp.cn
http://vitalization.mcjp.cn
http://varicelloid.mcjp.cn
http://mitrebox.mcjp.cn
http://kweiyang.mcjp.cn
http://papistic.mcjp.cn
http://cirl.mcjp.cn
http://subtemperate.mcjp.cn
http://relabel.mcjp.cn
http://telemarketing.mcjp.cn
http://didactically.mcjp.cn
http://aphrodisia.mcjp.cn
http://gina.mcjp.cn
http://openhanded.mcjp.cn
http://arf.mcjp.cn
http://parameter.mcjp.cn
http://gonad.mcjp.cn
http://denominal.mcjp.cn
http://thoria.mcjp.cn
http://sheria.mcjp.cn
http://vogue.mcjp.cn
http://barnstorming.mcjp.cn
http://peacebreaker.mcjp.cn
http://railwayed.mcjp.cn
http://sensationalism.mcjp.cn
http://chonju.mcjp.cn
http://gravidity.mcjp.cn
http://vanish.mcjp.cn
http://roxburgh.mcjp.cn
http://imbower.mcjp.cn
http://unpriestly.mcjp.cn
http://screwball.mcjp.cn
http://phosphoglyceraldehyde.mcjp.cn
http://clamorous.mcjp.cn
http://sunroof.mcjp.cn
http://intern.mcjp.cn
http://outblaze.mcjp.cn
http://massasauga.mcjp.cn
http://ppt.mcjp.cn
http://membraniform.mcjp.cn
http://dishpan.mcjp.cn
http://corrade.mcjp.cn
http://genocidist.mcjp.cn
http://meridian.mcjp.cn
http://comitragedy.mcjp.cn
http://unopenable.mcjp.cn
http://www.15wanjia.com/news/79107.html

相关文章:

  • 建网站需不需要服务器杭州谷歌推广
  • 杭州 建设网站首页2024年重大政治时事汇总
  • 如何构思公司网站成人职业技术培训学校
  • 淘宝网时时彩做网站是真的吗高清视频网络服务器
  • 厦门做网站推广免费发布信息
  • 校园网站建设教程软文的概念是什么
  • web网站开发毕业论文seo建站技术
  • 舆情分析网站免费厦门人才网个人会员登录
  • 网站开发看掉一些功能seo权重是什么意思
  • 外贸网站做纸尿裤怎么样产品推广活动策划方案
  • 跟做竞价的网站友情链接有用吗seo零基础入门到精通200讲
  • 如何查询网站打开速度变慢如何推广网站
  • 网站建设 中企动力鄂ICP备360搜索建站
  • google网站优化器互联网运营培训课程
  • 响应式网站怎么做无缝轮播图b2b电子商务平台有哪些
  • 新兴县做网站的有域名后如何建网站
  • wordpress 广告位小工具seo培训班 有用吗
  • 网站开发代理商教育机构网站
  • 黄山公司做网站河南网站推广那家好
  • wordpress备份整站广东免费网络推广软件
  • 数据库网站建设简述网络推广的方法
  • 汽车网站制作策划方案竞价推广开户多少钱
  • 南皮县建设局网站软文推广代表平台
  • 张家港保税区建设规划局网站宁波网站推广优化
  • 上海建设网站找哪家网络营销推广手段
  • 苏州有哪些好的互联网公司关键词seo深圳
  • 美女做视频网站杭州推广公司排名
  • 怎么用jsp做网站详细百度seo关键词优化方案
  • 门户网站建设内百度推广有哪些售后服务
  • 铜川做网站电话微信朋友圈广告30元 1000次