当前位置: 首页 > news >正文

政府网站建设进度互联网广告价格

政府网站建设进度,互联网广告价格,舟山百度seo,昆明电商网站建设专栏:神经网络复现目录 深度学习神经网络基础知识(二) 本文讲述神经网络基础知识,具体细节讲述前向传播,反向传播和计算图,同时讲解神经网络优化方法:权重衰减,Dropout等方法,最后进行Kaggle实…

专栏:神经网络复现目录

深度学习神经网络基础知识(二)

本文讲述神经网络基础知识,具体细节讲述前向传播,反向传播和计算图,同时讲解神经网络优化方法:权重衰减,Dropout等方法,最后进行Kaggle实战,具体用一个预测房价的例子使用上述方法。

文章部分文字和代码来自《动手学深度学习》


文章目录

  • 深度学习神经网络基础知识(二)
    • 范数
    • 权重衰减
      • 定义
      • 权重衰减的从零实现
      • 运行结果
      • 权重衰减的简洁实现
    • 暂退法(Dropout)
      • 定义
      • 暂退法的从零实现
      • 运行结果
      • 暂退法的简洁实现


范数

LpL_pLp范数是一种向量范数,定义如下:

∣x∣p=(∣x1∣p+∣x2∣p+⋯+∣xn∣p)1p\left|\boldsymbol{x}\right|{p}=\left(\left|x{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}xp=(x1p+x2p++xnp)p1

其中,p≥1p \geq 1p1x=(x1,x2,⋯,xn)\boldsymbol{x}=(x_1, x_2, \cdots, x_n)x=(x1,x2,,xn) 是一个 nnn 维向量。当 p=2p=2p=2 时,LpL_pLp范数也称为欧几里得范数(Euclidean norm),常用于表达向量的长度或者大小。当 p=1p=1p=1 时,LpL_pLp范数也称为曼哈顿范数(Manhattan norm)或者 ℓ1\ell_11范数,常用于表达向量中各个元素的绝对值之和。当 p→∞p \rightarrow \inftyp 时,LpL_pLp范数也称为切比雪夫范数(Chebyshev norm)或者 ℓ∞\ell_\infty 范数,常用于表达向量中绝对值最大的元素。

L0L_0L0范数不是向量范数,因为它并不满足向量范数的三个条件之一,即正定性。通常把向量 x\boldsymbol{x}x 中非零元素的个数称为 x\boldsymbol{x}xL0L_0L0 范数,但这并不是一个数学上合理的定义。

常见的范数有以下几种:

L1L^1L1 范数:∣∣x∣∣1=∑i=1n∣xi∣||x||1 = \sum{i=1}^n |x_i|∣∣x∣∣1=i=1nxi

L2L^2L2 范数:∣∣x∣∣2=∑i=1nxi2||x||2 = \sqrt{\sum{i=1}^n x_i^2}∣∣x∣∣2=i=1nxi2

权重衰减

定义

权重衰减是一种用于降低过拟合的正则化技术。其原理是通过在模型训练过程中增加一个惩罚项(也称作正则化项),来抑制模型的复杂度,从而达到减小过拟合的效果。

具体来说,在损失函数中添加一个正则化项,一般会对模型的参数进行L2L_2L2范数的约束,也就是让模型的参数尽量小。这样,在模型训练过程中,不仅会尽量减小训练数据的损失,还会尽量让模型参数的平方和小,从而达到抑制模型过拟合的效果。

权重衰减的损失函数为:
在这里插入图片描述
其中 L(w,b)\mathcal{L}(\boldsymbol{w}, b)L(w,b) 是原始的无正则化项的损失函数,∣w∣2|\boldsymbol{w}|^2w2 表示模型参数的L2L_2L2范数,λ\lambdaλ 是正则化强度,nnn 是训练样本数。

在优化算法中,我们需要对这个损失函数进行梯度下降。由于正则化项的梯度为 λnw\frac{\lambda}{n}\boldsymbol{w}nλw,因此我们需要对原始的梯度加上这个正则化项的梯度:

w←(1−ηλ∣B∣)w−η∣B∣∑i∈B∂∂wl(i)(w,b)w \leftarrow (1 - \frac{\eta \lambda}{|B|})w - \frac{\eta}{|B|} \sum_{i \in B} \frac{\partial}{\partial w} l^{(i)}(w, b) w(1Bηλ)wBηiBwl(i)(w,b)

其中,www是待更新的权重参数,η\etaη是学习率,λ\lambdaλ是正则化超参数(即权重衰减超参数),∣B∣|B|B是当前小批量中的样本数,l(i)(w,b)l^{(i)}(w, b)l(i)(w,b)是第iii个样本的损失函数,∂∂wl(i)(w,b)\frac{\partial}{\partial w} l^{(i)}(w, b)wl(i)(w,b)是对权重参数的损失函数梯度。

权重衰减的从零实现

构造生成数据集的函数

%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
#生成数据集
def synthetic_data(w,b,num):#x通过正态分布生成x=torch.normal(0,1,(num,len(w)))y=torch.matmul(x,w)+b#数据集中加入噪声y+=torch.normal(0,0.01,y.shape)return x,y.reshape(-1,1)

构造一个数据迭代器

def load_array(data_arrays, batch_size, is_train=True):  #@save"""构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)

生成数据集

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = synthetic_data(true_w, true_b, n_train)
train_iter = load_array(train_data, batch_size)
test_data = synthetic_data(true_w, true_b, n_test)
test_iter = load_array(test_data, batch_size, is_train=False)

初始化模型参数

def init_params():w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)b = torch.zeros(1, requires_grad=True)return [w, b]

定义L2范数惩罚

def l2_penalty(w):return torch.sum(w.pow(2)) / 2

训练

def train(lambd):w, b = init_params()net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_lossnum_epochs, lr = 100, 0.003animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:# 增加了L2范数惩罚项,# 广播机制使l2_penalty(w)成为一个长度为batch_size的向量l = loss(net(X), y) + lambd * l2_penalty(w)l.sum().backward()d2l.sgd([w, b], lr, batch_size)if (epoch + 1) % 5 == 0:animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数是:', torch.norm(w).item())

运行结果

未使用权重衰减
在这里插入图片描述
使用权重衰减
在这里插入图片描述

权重衰减的简洁实现

def train_concise(weight_decay):net = nn.Sequential(nn.Linear(num_inputs, 1))for param in net.parameters():param.data.normal_()loss = nn.MSELoss(reduction='none')num_epochs, lr = 100, 0.003# 偏置参数没有衰减trainer  = optim.SGD(model.parameters(), lr=lr, weight_decay=weight_decay)animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:trainer.zero_grad()l = loss(net(X), y)l.mean().backward()trainer.step()if (epoch + 1) % 5 == 0:animator.add(epoch + 1,(d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数:', net[0].weight.norm().item())

关注这行代码

trainer  = optim.SGD(model.parameters(), lr=lr, weight_decay=weight_decay)

其中weight_decay参数即为lambda

暂退法(Dropout)

定义

Dropout是一种用于神经网络的正则化技术,旨在减少模型的过拟合。该算法的核心思想是在网络的训练过程中随机“丢弃”一部分神经元,从而强制模型学习更加鲁棒和通用的特征。在测试时,所有神经元都保留,但是输出值需要乘以一个固定比例以保持期望输出不变。

具体来说,假设我们有一个包含LLL个层的神经网络。对于第iii层,它的输出为h(i)h^{(i)}h(i)。在训练时,我们按照一定的概率ppp来随机选择一部分神经元,将它们的输出值设置为0。因此,第iii层的输出为:

h~(i)=r(i)⊙h(i)\tilde{h}^{(i)}=r^{(i)}\odot h^{(i)}h~(i)=r(i)h(i)

其中r(i)r^{(i)}r(i)是一个与h(i)h^{(i)}h(i)具有相同形状的二进制向量,其中元素值为1的概率为ppp,值为0的概率为1−p1-p1p⊙\odot表示按元素相乘。在前向传播过程中,我们使用h~(i)\tilde{h}^{(i)}h~(i)代替h(i)h^{(i)}h(i)进行计算。在反向传播过程中,由于某些神经元的输出被设置为0,我们只需要将其对应的梯度清零即可。

在测试时,我们需要保留所有神经元的输出,但是为了保持期望输出不变,我们需要将所有神经元的输出值乘以ppp,即:

htest(i)=p⋅h(i)h^{(i)}_{test}=p\cdot h^{(i)}htest(i)=ph(i)

下图形象的展示了暂退法的效果:
在这里插入图片描述

暂退法的从零实现

这是一个实现dropout算法的函数,它接受一个输入张量X和一个dropout概率dropout,然后返回一个应用了dropout的输出张量。

具体来说,该函数会生成一个与X形状相同的掩码张量,其中每个元素都是随机生成的0或1,生成方式是根据概率dropout与0比较,如果大于dropout则为1,否则为0。然后将掩码张量与X相乘并除以(1 - dropout),这个操作相当于将保留下来的元素值除以它们的概率。最后返回应用了dropout的输出张量。

import torch
from torch import nn
from d2l import torch as d2ldef dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)

具体关注一下:

mask = (torch.rand(X.shape) > dropout).float()

这一行代码的作用是生成一个与X形状相同的张量mask,并且其中的每个元素都是0或1。这里的0和1表示相应的X元素是否被保留,而生成这些0和1的方式是随机的,因为我们用torch.rand()函数生成一个形状与X相同的随机张量,并将其中的每个元素与dropout做比较。

比较的结果是一个布尔类型的张量,即对于X中的每个元素,如果随机生成的相应元素的值大于dropout,那么在mask中相应位置的值为1,表示保留;反之,如果随机生成的值小于等于dropout,那么在mask中相应位置的值为0,表示丢弃。

最后,为了保持期望的值不变,我们将所有保留的元素的值除以 1- dropout,这是因为被保留的概率是1- dropout。所以,最终得到的输出是一个X的掩码版本,其中的一些元素被随机置为零。

测试一下我们写的dropout层

X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))

定义模型参数

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

定义模型
这次我们使用了和以往不同、面向对象的模型定义方式,需要重写__init__和forward函数

init 方法用于定义网络结构,包括网络层、激活函数、损失函数等,并初始化权重、偏差等参数。这些网络参数在训练过程中会不断地更新。

forward 方法用于定义数据在网络中的正向传播(也就是模型从输入到输出的计算过程),即输入数据经过网络的各层计算,最终得到输出。在该方法中,我们可以任意组合各种网络层及其参数,实现自己所需要的网络结构和计算过程。

在下面的代码中,Net 类继承自 nn.Module,其中 init 方法用于定义网络的结构,包括三个全连接层和一个 ReLU 激活函数。forward 方法用于实现数据在网络中的正向传播计算,包括将输入 X 经过全连接层和激活函数得到输出 out。在训练模式中,还会在第一个全连接层和第二个全连接层后面添加 dropout 层。

dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training = True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_trainingself.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

训练和测试

num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

运行结果

在这里插入图片描述

暂退法的简洁实现

net = nn.Sequential(nn.Flatten(),nn.Linear(784, 256),nn.ReLU(),# 在第一个全连接层之后添加一个dropout层nn.Dropout(dropout1),nn.Linear(256, 256),nn.ReLU(),# 在第二个全连接层之后添加一个dropout层nn.Dropout(dropout2),nn.Linear(256, 10))def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, std=0.01)net.apply(init_weights);

或者是

class Net(nn.Module):def __init__(self, input_size, hidden_size, output_size, dropout_prob):super(Net, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.fc2 = nn.Linear(hidden_size, hidden_size)self.fc3 = nn.Linear(hidden_size, output_size)self.dropout = nn.Dropout(p=dropout_prob)def forward(self, x):x = torch.relu(self.fc1(x))x = self.dropout(x)x = torch.relu(self.fc2(x))x = self.dropout(x)x = self.fc3(x)return x
http://www.15wanjia.com/news/7490.html

相关文章:

  • 网上那个网站做席子批发怎样在百度上打广告
  • 青岛永诚网络有限公司厦门seo关键词
  • 网站公司如何推广网站惠州seo优化
  • 西宁网站建设优化营商环境的措施建议
  • 嘉兴seo报价seo优化网络公司
  • 视频直播网站怎么做软文代写接单平台
  • 网站挂马怎么办网址收录查询
  • 网页设计自学网站seo免费工具
  • 重庆市建设工程施工安全管理总站淘宝seo软件
  • icp备案网站建设方案书网络营销策划书结构
  • 大连广告设计与制作公司贵州百度seo整站优化
  • 怎样做淘宝联盟的网站代发推广百度首页包收录
  • ps做网站心得石家庄新闻头条新闻最新今天
  • vs网站开发 百度文库seo站长网
  • 如何提高网站点击率怎么做百度推广热线电话
  • 家庭农场做网站百度识图搜索引擎
  • 龙之向导外贸网站怎么样百度 搜索热度
  • 下载类网站怎么做兰州网络优化seo
  • 西安高端网站建设公司重庆seo排名方法
  • 做网站最适合用多大的图片找做网站的公司
  • 坂田网站建设广告竞价
  • 手机网站搜索蚁百杭州网站seo优化
  • wordpress模板网站外贸电商平台哪个网站最好
  • 如何做网站的悬浮窗口近期新闻热点大事件
  • php动态网站开发有什么用微博营销案例
  • 我的网站要怎样做才能让人家搜到公司推广方法有哪些
  • 网站开发设计师公众号怎么开通
  • 宠物医院网站开发背景合肥seo整站优化
  • 网站备案信息查询申请表宠物美容师宠物美容培训学校
  • 网站建设技术方案模板佛山seo优化