当前位置: 首页 > news >正文

树莓派做的网站百度浏览器广告怎么投放

树莓派做的网站,百度浏览器广告怎么投放,网站如何做数据分析报告,云浮新增病例详情目录 开端 01背包问题 AcWing 01背包问题 Luogu P2925干草出售 Luogu P1048采药 完全背包问题 AcWing 完全背包问题 Luogu P1853投资的最大效益 多重背包问题 AcWing 多重背包问题 I AcWing 多重背包问题 II Luogu P1776宝物筛选 混合背包问题 AcWing 混合背包问题…

目录

开端

01背包问题

AcWing 01背包问题

Luogu P2925干草出售

Luogu P1048采药

完全背包问题

AcWing 完全背包问题

Luogu P1853投资的最大效益

多重背包问题

AcWing 多重背包问题 I

AcWing 多重背包问题 II

Luogu P1776宝物筛选

混合背包问题

AcWing 混合背包问题

Luogu P1833樱花

二维费用背包问题

AcWing 二维费用的背包问题 

Luogu P1507NASA的食物计划

分组背包问题

AcWing 分组背包问题

Luogu P1757 通天之分组背包


开端

关于背包问题,嗯一直学不明白,暑假咸的没事又拾起来学了一下,跟着这位大佬整理的思路(背包九讲——全篇详细理解与代码实现-CSDN博客),对背包的思想有了一定清晰的理解,大佬的文章有些长,所以跟着自己的思路再整理一下。

为了方便统一,先定义一下

c[i]:表示代价

w[i]:表示价值

dp[i][j]:表示前i个物品花费代价为j的可以获得的最大代价

p[i]:表示第i种物品最多有p[i]件

01背包问题

定义:

dp[i][j]:表示前i个物品恰放入一个容量为j的背包下可以获得的最大代价

子问题第i1件物品状态:

①不选:dp[i][j]=dp[i-1][j]②选:dp[i][j]=dp[i][j-c[i]]+w[i]

状态转移方程:

dp[i][j]=max(dp[i-1][j],dp[i][j-c[i]]+w[i])

优化空间复杂度:

O(V*N)

for(int i=1;i<=n;i++)for(int j=c[i];j<=V;j--)dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);

O(V)

for(int i=1;i<=n;i++)for(int j=V;j>=c[i];j++)dp[j]=max(dp[j],dp[j-c[i]]+w[i]);

关于顺序和逆序:

逆序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i])转移过来的
顺序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i][j],dp[i][j-c[i]]+w[i])转移过来的

初始化问题:

①要求恰好装满:dp[i]=-∞,dp[0]=0;②只要求价值最大:dp[i]=0;

 AcWing 01背包问题

const int N = 1010;
int c[N], w[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int i = 1; i <= N; i++)cin >> c[i] >> w[i];for (int i = 1; i <= N; i++)for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[V] << endl;
}

Luogu P2925干草出售

const int N = 5e4 + 10;
int w[N], dp[N];
inline void solve()
{int C, H;cin >> C >> H;for (int i = 1; i <= H; i++)cin >> w[i];for (int i = 1; i <= H; i++)for (int j = C; j >= w[i]; j--)dp[j] = max(dp[j], dp[j - w[i]] + w[i]);cout << dp[C] << endl;
}

Luogu P1048采药

const int N = 1010;
int c[N], w[N], dp[N];
inline void solve()
{int T, M;cin >> T >> M;for (int i = 1; i <= M; i++)cin >> c[i] >> w[i];for (int i = 1; i <= M; i++)for (int j = T; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[T] << endl;
}

完全背包问题

 定义:

dp[i][j]:表示前i种物品恰放入一个容量为j的背包下可以获得的最大代价

子问题第i种物品状态:

①不选该种物品:dp[i][j]=dp[i-1][j];
②选不同件该种物品:选0件、1件、2件……k件:dp[i][j]=dp[i-1][j-c[i]*k]+w[i]*k;

状态转移方程:

dp[i][j]=max(dp[i-1][j-c[i]*k]+w[i]*k)  0<=c[i]*k<=j

优化空间复杂度:

O(N*∑(V/c[i]))

for(int i=1;i<=n;i++)for(int j=c[i];j<=V;j++)for(int k=0;c[i]*k<=j;k++)dp[i][j]=max(dp[i][j],dp[i-1][j-c[i]*k]+w[i]*k);
# 第一个参数,因为k=0时就相当于dp[i-1][j];

O(V*N)转化为01背包问题

for(int i=1;i<=n;i++)for(int j=c[i];j<=j;j++)dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
//等价于dp[i][j]=max(dp[i-1][j],dp[i][j-c[i]]+w[i]);(不取该物品,取不同件);

关于顺序和逆序:

逆序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i])转移过来的
顺序表示:dp[j]=max(dp[j],dp[j-c[i]]+w[i])由dp[i][j]=max(dp[i-1][j],dp[i][j-c[i]]+w[i])转移过来的

初始化问题:

①要求恰好装满:dp[i]=-∞,dp[0]=0;②只要求价值最大:dp[i]=0;

AcWing 完全背包问题

const int N = 1010;
int c[N], w[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int i = 1; i <= N; i++)cin >> c[i] >> w[i];for (int i = 1; i <= N; i++)for (int j = c[i]; j <= V; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[V] << endl;
}

Luogu P1853投资的最大效益

const int N = 1e6 + 10;
int c[N], w[N], dp[N];
inline void solve()
{int s, n, d;cin >> s >> n >> d;for (int i = 1; i <= d; i++)cin >> c[i] >> w[i];while (n--){for (int i = 1; i <= d; i++)for (int j = c[i]; j <= s; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);s += dp[s];}cout << s << endl;
}
int main(

这个题目有个小坑

所以要做一下处理:除以1000防止爆空间

const int N = 1e6 + 10;
int c[N], w[N], dp[N];
inline void solve()
{int s, n, d;cin >> s >> n >> d;for (int i = 1; i <= d; i++)cin >> c[i] >> w[i];while (n--){for (int i = 1; i <= d; i++)for (int j = c[i] / 1000; j <= s / 1000; j++)dp[j] = max(dp[j], dp[j - c[i] / 1000] + w[i]);s += dp[s / 1000];}cout << s << endl;
}

多重背包问题

  定义:

dp[i][j]:表示前i种物品恰放入一个容量为j的背包下可以获得的最大代价

子问题第i种物品状态:

①不选该种物品:dp[i][j]=dp[i-1][j];
②选不同件该种物品:选1件、2件……p[i]件:dp[i][j]=dp[i-1][j-c[i]*k]+w[i]*k;

状态转移方程:

dp[i][j]=max(dp[i-1][j-c[i]*k]+w[i]*k)  0<=k<=p[i]

转化为01背包问题:

方法一:O(V*∑p[i])

for(int i=1;i<=n;i++)for(int j=V;j>=c[i];j--)for(int k=1;c[i]*k<=j&&k<=p[i];k++)dp[j]=max(dp[j],dp[j-c[i]*k]+w[i]*k);
# 第一个参数,因为k=0时就相当于dp[i-1][j];

方法二:二进制优化O(N*log(p)*V)

for (int i = 1; i <= N; i++){int a, b, s;cin >> a >> b >> s;int k = 1;while (k <= s)  //0……2^k-1部分的系数1,2,4,8……{cnt++;c[cnt] = k * a;w[cnt] = k * b;s -= k;k *= 2;}if (s > 0)  //2^k……s部分的系数 s-2^k{cnt++;c[cnt] = s * a;w[cnt] = s * b;}}N = cnt;  //更新总数量for (int i = 1; i <= N; i++)  //01背包问题for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);
 for (int i = 1; i <= n; i++){cin >> c[i] >> w[i] >> p[i];int s = min(p[i], W / w[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = W; j >= k * w[i]; j--){dp[j] = max(dp[j], dp[j - k * w[i]] + k * c[i]);}}}

初始化问题:

①要求恰好装满:dp[i]=-∞,dp[0]=0;②只要求价值最大:dp[i]=0;

方法一:

AcWing 多重背包问题 I

const int N = 110;
int c[N], w[N], p[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;int cnt = 0;for (int i = 1; i <= N; i++)cin >> c[i] >> w[i] >> p[i];for (int i = 1; i <= N; i++)for (int j = V; j >= c[i]; j--)for (int k = 1; c[i] * k <= j && k <= p[i]; k++)dp[j] = max(dp[j], dp[j - c[i] * k] + w[i] * k);cout << dp[V] << endl;
}

方法二:

AcWing 多重背包问题 II

const int N = 20010;  //注意初始化,否则会越界
int c[N], w[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;int cnt = 0;for (int i = 1; i <= N; i++){int a, b, s;cin >> a >> b >> s;int k = 1;while (k <= s)  //0……2^k-1部分的系数1,2,4,8……{cnt++;c[cnt] = k * a;w[cnt] = k * b;s -= k;k *= 2;}if (s > 0)  //2^k……s部分的系数 s-2^k{cnt++;c[cnt] = s * a;w[cnt] = s * b;}}N = cnt;  //更新总数量for (int i = 1; i <= N; i++)  //01背包问题for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[V] << endl;
}

Luogu P1776宝物筛选

const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], dp[N];
inline void solve()
{int n, W;cin >> n >> W;int cnt = 0;for (int i = 1; i <= n; i++){int a, b, s;cin >> a >> b >> s;int k = 1;while (k <= s){cnt++;w[cnt] = k * a;c[cnt] = k * b;s -= k;k *= 2;}if (s > 0){cnt++;w[cnt] = s * a;c[cnt] = s * b;}}n = cnt;for (int i = 1; i <= n; i++)for (int j = W; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);cout << dp[W] << endl;
}

简化

const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], p[N], dp[N];
inline void solve()
{int n, W;cin >> n >> W;for (int i = 1; i <= n; i++){cin >> c[i] >> w[i] >> p[i];int s = min(p[i], W / w[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = W; j >= k * w[i]; j--){dp[j] = max(dp[j], dp[j - k * w[i]] + k * c[i]);}}}cout << dp[W] << endl;
}

混合背包问题

 01背包、完全背包、多重背包的混合状态转移:

for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> p[i];// 01背包if (p[i] == -1)for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);// 完全背包else if (p[i] == 0)for (int j = c[i]; j <= V; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);// 多重背包二进制优化else{int s = min(p[i], V / c[i]);for (int k = 1; s > 0; k <<= 1){k = max(k, s);s -= k;for (int j = V; j >= k * c[i]; j--)dp[j] = max(dp[j], dp[j - k * c[i]] + k * w[i]);}}}

AcWing 混合背包问题

const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], p[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> p[i];// 01背包if (p[i] == -1)for (int j = V; j >= c[i]; j--)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);// 完全背包else if (p[i] == 0)for (int j = c[i]; j <= V; j++)dp[j] = max(dp[j], dp[j - c[i]] + w[i]);//或将完全背包转化为多重01背包s=V/c[i]// 多重背包二进制优化else{int s = min(p[i], V / c[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = V; j >= k * c[i]; j--)dp[j] = max(dp[j], dp[j - k * c[i]] + k * w[i]);}}}cout << dp[V] << endl;
}

Luogu P1833樱花

const int N = 1e6 + 10; // 注意初始化,否则会越界
int c[N], w[N], p[N], dp[N];
inline void solve()
{int m1, m2, s1, s2, N;scanf("%d:%d %d:%d %d", &m1, &s1, &m2, &s2, &N);int V = m2 * 60 + s2 - m1 * 60 - s1;for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> p[i];int s;if (p[i] == 0) // 完全转化为多重s = V / c[i];elses = min(p[i], V / c[i]);for (int k = 1; s > 0; k <<= 1){k = min(k, s);s -= k;for (int j = V; j >= k * c[i]; j--)dp[j] = max(dp[j], dp[j - k * c[i]] + k * w[i]);}}cout << dp[V] << endl;
}

二维费用背包问题

 定义:每件物品需要同时花费两种不同的代价

dp[i][j][k]:表示前i种物品付出两种代价分别最大为j和k时可获得的最大价值

状态转移方程:

dp[i][j][k]=max(dp[i-1][j][k],dp[i-1][j-c[i]][k-m[i]]+w[i])  

01背包代码(完全背包、多重背包可以类比)

for(int i=1;i<=n;i++)for(int j=V;j>=c[i];j--)for(int k=M;k>=m[i];k--)dp[j][k]=max(dp[j][k],dp[j-c[i]][k-m[i]]+w[i]);

AcWing 二维费用的背包问题 

const int N = 1010; // 注意初始化,否则会越界
int c[N], w[N], m[N], dp[N][N];
inline void solve()
{int N, V, M;cin >> N >> V >> M;for (int i = 1; i <= N; i++){cin >> c[i] >> m[i] >> w[i];for (int j = V; j >= c[i]; j--)for (int k = M; k >= m[i]; k--)dp[j][k] = max(dp[j][k], dp[j - c[i]][k - m[i]] + w[i]);}cout << dp[V][M] << endl;
}

Luogu P1507NASA的食物计划

const int N = 1010; // 注意初始化,否则会越界
int c[N], w[N], m[N], dp[N][N];
inline void solve()
{int V, M, N;cin >> V >> M >> N;for (int i = 1; i <= N; i++){cin >> c[i] >> m[i] >> w[i];for (int j = V; j >= c[i]; j--)for (int k = M; k >= m[i]; k--)dp[j][k] = max(dp[j][k], dp[j - c[i]][k - m[i]] + w[i]);}cout << dp[V][M] << endl;
}

分组背包问题

  定义:

dp[k][j]:表示前k组物品花费代价j能取得的最大价值

子问题第k组物品状态:

①不选该组物品:dp[k][j]=dp[k-1][j];
②选该组物品:dp[k][j]=dp[k-1][j-c[i]+w[i]] 物品i属于k组

状态转移方程:

dp[k][j]=max(dp[k-1][j],dp[k-1][j-c[i]]+w[i])  

模板:

 for (int k = 1; k <= N; k++){int s;cin >> s; // 第k组的物品数量for (int i = 1; i <= s; i++)cin >> c[i] >> w[i]; // 组中每个物品i的属性for (int j = V; j >= 0; j--)for (int i = 1; i <= s; i++) // 保证每组物品只能选一个,可以覆盖之前组内物品最优解的来取最大值if (j >= c[i])dp[j] = max(dp[j], dp[j - c[i]] + w[i]);}

AcWing 分组背包问题

const int N = 110; // 注意初始化,否则会越界
int c[N], w[N], m[N], dp[N];
inline void solve()
{int N, V;cin >> N >> V;for (int k = 1; k <= N; k++){int s;cin >> s; // 第k组的物品数量for (int i = 1; i <= s; i++)cin >> c[i] >> w[i]; // 组中每个物品i的属性for (int j = V; j >= 0; j--)for (int i = 1; i <= s; i++) // 保证每组物品只能选一个,可以覆盖之前组内物品最优解的来取最大值if (j >= c[i])dp[j] = max(dp[j], dp[j - c[i]] + w[i]);}cout << dp[V] << endl;
}

Luogu P1757 通天之分组背包

const int N = 110;  // 注意初始化,否则会越界
const int M = 1010; // 注意初始化,否则会越界
int c[M], w[M], dp[M];
int g[N][N], b[M]; // g[k][i]表示小组k种第i个物品的编号,b[k]表示小组k的物品+1;
inline void solve()
{int N, V;cin >> V >> N;int t = 0, k = 0;for (int i = 1; i <= N; i++){cin >> c[i] >> w[i] >> k;t = max(t, k);  // 求小组的组数b[k]++;         // 小组k的物品+1;g[k][b[k]] = i; // 小组k中第b[k]个物品的编号为i;}for (int k = 1; k <= t; k++)for (int j = V; j >= 0; j--)for (int i = 1; i <= b[k]; i++)if (j >= c[g[k][i]])dp[j] = max(dp[j], dp[j - c[g[k][i]]] + w[g[k][i]]);cout << dp[V] << endl;
}

文章转载自:
http://introgress.gtqx.cn
http://santon.gtqx.cn
http://juneau.gtqx.cn
http://rheostat.gtqx.cn
http://diplon.gtqx.cn
http://friedcake.gtqx.cn
http://dominant.gtqx.cn
http://dictyosome.gtqx.cn
http://buddybuddy.gtqx.cn
http://font.gtqx.cn
http://remittent.gtqx.cn
http://amphitheatral.gtqx.cn
http://dislike.gtqx.cn
http://heroise.gtqx.cn
http://stylus.gtqx.cn
http://superovulate.gtqx.cn
http://medicare.gtqx.cn
http://mongol.gtqx.cn
http://effluvial.gtqx.cn
http://microfungus.gtqx.cn
http://mischoose.gtqx.cn
http://annulate.gtqx.cn
http://airworthy.gtqx.cn
http://hemline.gtqx.cn
http://natator.gtqx.cn
http://epidotic.gtqx.cn
http://inurbanity.gtqx.cn
http://chanceless.gtqx.cn
http://photoplate.gtqx.cn
http://defer.gtqx.cn
http://epicyclic.gtqx.cn
http://marlpit.gtqx.cn
http://dysautonomia.gtqx.cn
http://presently.gtqx.cn
http://freebie.gtqx.cn
http://svelte.gtqx.cn
http://nisus.gtqx.cn
http://asroc.gtqx.cn
http://inconsciently.gtqx.cn
http://grainsick.gtqx.cn
http://euphonize.gtqx.cn
http://incretion.gtqx.cn
http://alphabetic.gtqx.cn
http://hoar.gtqx.cn
http://klipdas.gtqx.cn
http://coonskin.gtqx.cn
http://ichinomiya.gtqx.cn
http://shoveler.gtqx.cn
http://cins.gtqx.cn
http://aiblins.gtqx.cn
http://brimmer.gtqx.cn
http://argental.gtqx.cn
http://uncock.gtqx.cn
http://cardcase.gtqx.cn
http://dustband.gtqx.cn
http://marcasite.gtqx.cn
http://abaxial.gtqx.cn
http://jeering.gtqx.cn
http://eligibility.gtqx.cn
http://titular.gtqx.cn
http://august.gtqx.cn
http://carpetweed.gtqx.cn
http://costalgia.gtqx.cn
http://amoebocyte.gtqx.cn
http://impedimentary.gtqx.cn
http://televisionwise.gtqx.cn
http://radiac.gtqx.cn
http://fixture.gtqx.cn
http://usmcr.gtqx.cn
http://canal.gtqx.cn
http://zephaniah.gtqx.cn
http://upbreed.gtqx.cn
http://archbishopric.gtqx.cn
http://tokomak.gtqx.cn
http://exogamous.gtqx.cn
http://milton.gtqx.cn
http://dahoman.gtqx.cn
http://kasher.gtqx.cn
http://paraplegic.gtqx.cn
http://absord.gtqx.cn
http://shamash.gtqx.cn
http://screwed.gtqx.cn
http://decubital.gtqx.cn
http://cradleland.gtqx.cn
http://injurious.gtqx.cn
http://fluvioglacial.gtqx.cn
http://gaited.gtqx.cn
http://centrum.gtqx.cn
http://magdalene.gtqx.cn
http://provisionally.gtqx.cn
http://autarchy.gtqx.cn
http://letup.gtqx.cn
http://philippic.gtqx.cn
http://breakbone.gtqx.cn
http://frontiersman.gtqx.cn
http://termitarium.gtqx.cn
http://dialytic.gtqx.cn
http://heatproof.gtqx.cn
http://heterogony.gtqx.cn
http://chrysoprase.gtqx.cn
http://www.15wanjia.com/news/71726.html

相关文章:

  • 柳市做网站的公司怎么去做网络推广
  • 做药品网站规划方案上海百度首页优化
  • 租空间网站网站优化关键词排名
  • 独立做网站需要学什么短链接在线生成官网
  • 滴答手表网站网络营销推广合作
  • 网络网站建设属于什么费用安徽百度seo教程
  • 导购类网站怎么做合肥网络推广营销
  • 广州网站建设市场合肥网站seo费用
  • 网站开发费用是研发费用制作网站的公司有哪些
  • 响应式网站用什么软件做效果广告发布
  • 营销型企业网站建设体会广告做到百度第一页
  • 现在为什么网站都打不开了怎么办啊百度广告投放平台
  • 梅州市城乡建设部网站首页西安百度关键词优化
  • 建立免费网站 优帮云提高百度快速排名
  • 做字幕网站有哪些比较好的友链平台
  • wordpress主题零基础网站关键词百度自然排名优化
  • 现在建网站做推广能赚钱吗怎样做电商 入手
  • 济南做html5网站建设汉中网站seo
  • 做网站绑定 对应的域名营销型网站一般有哪些内容
  • 西宁做网站治愈君博i站长工具流量统计
  • 电子商务最好的出路站长seo查询
  • 如何给网站做排名优化搜索网
  • 怎样在手机上建网站徐州关键词优化排名
  • 网站建设负责传资料不网络营销推广方案有哪些
  • 北京上云网站建设公司优化落实疫情防控新十条
  • B2B平台服务筛选 网站建设厦门百度快速优化排名
  • 什么网站做视频seo专业优化方法
  • 为什么做网站必须用服务器会计培训机构
  • 自己做的网站显示iis7什么时候友情链接
  • 公务员建设文化与道德网站深圳seo推广外包