当前位置: 首页 > news >正文

营销型网站建设极速建站兰州搜索引擎优化

营销型网站建设极速建站,兰州搜索引擎优化,德州做网站多少钱,wordpress的mysql概述 在现代应用中,人脸检测是一项非常重要的技术,广泛应用于安全监控、身份验证等领域。本文将详细介绍如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例来展示整个过程。 环境准备 在开始编写代码之前&#…
概述

在现代应用中,人脸检测是一项非常重要的技术,广泛应用于安全监控、身份验证等领域。本文将详细介绍如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例来展示整个过程。

环境准备

在开始编写代码之前,确保已经安装了 OpenCV 库。可以使用以下命令安装:

pip install opencv-python
代码详解
# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time# 调用摄像头检测人脸并截图
def camera(window_name, path_name):# Linux 不显示图形界面cv2.namedWindow(window_name)# 视频来源,来自USB摄像头cap = cv2.VideoCapture(0)# 告诉OpenCV使用人脸识别分类器classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")# 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组color = (0, 255, 0)num = 0while cap.isOpened():ok, frame = cap.read()  # 读取一帧数据if not ok:break# 将当前桢图像转换成灰度图像grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))if len(faceRects) > 0:  # 大于0则检测到人脸for faceRect in faceRects:  # 单独框出每一张人脸x, y, w, h = faceRectnum = num + 1# 将当前帧保存为图片img_name = "%s/%d.jpg" % (path_name, num)image = frame[y - 10: y + h + 10, x - 10: x + w + 10]cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])# 延迟 60s,不要太频繁的发送,知道来了就可以了# time.sleep(60)# 画出矩形框cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)# 显示当前捕捉到了多少人脸图片了font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)# 显示图像 Linux 下注释掉即可cv2.imshow(window_name, frame)c = cv2.waitKey(10)if c & 0xFF == ord('q'):break# 释放摄像头并销毁所有窗口cap.release()cv2.destroyAllWindows()if __name__ == '__main__':camera("watchdog", os.getcwd()+"/face")
代码解析
1. 导入必要的模块
# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time
  • # -*- coding: utf-8 -*-:指定文件编码为 UTF-8。
  • import cv2:导入 OpenCV 库,用于图像处理和人脸检测。
  • import os:导入 os 模块,用于文件路径操作。
  • import time:导入 time 模块,用于延迟操作。
2. 定义 camera 函数
def camera(window_name, path_name):
  • def camera(window_name, path_name)::定义一个名为 camera 的函数,参数 window_name 是窗口名称,path_name 是保存截图的路径。
3. 创建窗口
    # Linux 不显示图形界面cv2.namedWindow(window_name)
  • cv2.namedWindow(window_name):创建一个窗口,用于显示视频流。在 Linux 下可以注释掉这行代码以不显示图形界面。
4. 打开摄像头
    # 视频来源,来自USB摄像头cap = cv2.VideoCapture(0)
  • cv2.VideoCapture(0):打开默认摄像头。参数 0 表示默认摄像头。
5. 加载人脸识别分类器
    # 告诉OpenCV使用人脸识别分类器classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")
  • cv2.CascadeClassifier(...):加载预训练的 Haar 级联分类器,用于检测人脸。
  • os.getcwd()+"/haarcascade_frontalface_alt.xml":指定分类器文件的路径。
6. 设置边框颜色
    # 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组color = (0, 255, 0)
  • color = (0, 255, 0):定义边框颜色为绿色。
7. 主循环
    num = 0while cap.isOpened():ok, frame = cap.read()  # 读取一帧数据if not ok:break# 将当前桢图像转换成灰度图像grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))if len(faceRects) > 0:  # 大于0则检测到人脸for faceRect in faceRects:  # 单独框出每一张人脸x, y, w, h = faceRectnum = num + 1# 将当前帧保存为图片img_name = "%s/%d.jpg" % (path_name, num)image = frame[y - 10: y + h + 10, x - 10: x + w + 10]cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])# 延迟 60s,不要太频繁的发送,知道来了就可以了# time.sleep(60)# 画出矩形框cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)# 显示当前捕捉到了多少人脸图片了font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)# 显示图像 Linux 下注释掉即可cv2.imshow(window_name, frame)c = cv2.waitKey(10)if c & 0xFF == ord('q'):break
  • num = 0:初始化计数器。
  • while cap.isOpened()::进入无限循环,实时读取摄像头图像。
  • ok, frame = cap.read():从摄像头读取一帧图像。
  • if not ok::检查读取是否成功,如果失败则退出循环。
  • grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY):将图像转换为灰度图像。
  • faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)):检测图像中的人脸。
  • if len(faceRects) > 0::检查是否检测到人脸。
  • for faceRect in faceRects::遍历检测到的每个人脸。
  • x, y, w, h = faceRect:获取人脸的位置和大小。
  • num = num + 1:增加计数器。
  • img_name = "%s/%d.jpg" % (path_name, num):生成保存图像的文件名。
  • image = frame[y - 10: y + h + 10, x - 10: x + w + 10]:裁剪人脸区域并扩大边界。
  • cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9]):保存图像。
  • cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2):在图像上绘制矩形框。
  • font = cv2.FONT_HERSHEY_SIMPLEX:设置字体样式。
  • cv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4):在图像上显示当前捕捉到的人脸数量。
  • cv2.imshow(window_name, frame):显示带有矩形标记的图像。
  • c = cv2.waitKey(10):等待 10 毫秒,等待用户按键。
  • if c & 0xFF == ord('q')::按 ‘q’ 键退出循环。
8. 释放资源
    # 释放摄像头并销毁所有窗口cap.release()cv2.destroyAllWindows()
  • cap.release():释放摄像头资源。
  • cv2.destroyAllWindows():关闭所有 OpenCV 窗口。
9. 主程序入口
if __name__ == '__main__':camera("watchdog", os.getcwd()+"/face")
  • if __name__ == '__main__'::检查是否直接运行此脚本。
  • camera("watchdog", os.getcwd()+"/face"):调用 camera 函数,传入窗口名称和保存截图的路径。
完整代码
# -*- coding: utf-8 -*-
# import 进openCV的库
import cv2
import os
import time
# 调用摄像头检测人脸并截图
def camera(window_name, path_name):# Linux 不显示图形界面cv2.namedWindow(window_name)# 视频来源,来自USB摄像头cap = cv2.VideoCapture(0)# 告诉OpenCV使用人脸识别分类器classfier = cv2.CascadeClassifier(os.getcwd()+"/haarcascade_frontalface_alt.xml")# 识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组color = (0, 255, 0)num = 0while cap.isOpened():ok, frame = cap.read()  # 读取一帧数据if not ok:break# 将当前桢图像转换成灰度图像grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))if len(faceRects) > 0:  # 大于0则检测到人脸for faceRect in faceRects:  # 单独框出每一张人脸x, y, w, h = faceRectnum = num+1# 将当前帧保存为图片img_name = "%s/%d.jpg" % (path_name, num)image = frame[y - 10: y + h + 10, x - 10: x + w + 10]cv2.imwrite(img_name, image, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])# 延迟 60s,不要太频繁的发送,知道来了就可以了# time.sleep(60)# 画出矩形框cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)# 显示当前捕捉到了多少人脸图片了font = cv2.FONT_HERSHEY_SIMPLEXcv2.putText(frame, 'num:%d/1000' % (num), (x + 30, y + 30), font, 1, (255, 0, 255), 4)# 显示图像 Linux 下注释掉即可cv2.imshow(window_name, frame)c = cv2.waitKey(10)if c & 0xFF == ord('q'):break# 释放摄像头并销毁所有窗口cap.release()cv2.destroyAllWindows()if __name__ == '__main__':camera("watchdog", os.getcwd()+"/face")
测试
  1. 确保你的摄像头正常工作。

  2. 运行脚本:

    python3 face_detection.py
    
  3. 打开摄像头后,你会看到一个窗口显示实时视频流,并且在检测到的人脸周围绘制绿色矩形。

  4. 按 ‘q’ 键退出程序。

总结

本文详细介绍了如何使用 Python 和 OpenCV 库实现摄像头人脸检测并截图,并通过具体的代码示例展示了整个过程。通过使用 cv2.VideoCapture 打开摄像头,cv2.CascadeClassifier 加载预训练的 Haar 级联分类器,cv2.cvtColor 转换图像颜色空间,cv2.rectangle 绘制矩形,cv2.imwrite 保存图像,最终实现了在实时视频流中检测并保存人脸图像的功能。



文章转载自:
http://plata.rhmk.cn
http://amorist.rhmk.cn
http://graymail.rhmk.cn
http://hexaemeron.rhmk.cn
http://khrushchevism.rhmk.cn
http://jeffersonian.rhmk.cn
http://gingerbread.rhmk.cn
http://umbrageous.rhmk.cn
http://wharfman.rhmk.cn
http://francolin.rhmk.cn
http://segregable.rhmk.cn
http://theriacal.rhmk.cn
http://wiping.rhmk.cn
http://ort.rhmk.cn
http://planet.rhmk.cn
http://tempter.rhmk.cn
http://anglophile.rhmk.cn
http://banneret.rhmk.cn
http://earpiece.rhmk.cn
http://galore.rhmk.cn
http://policewoman.rhmk.cn
http://anodic.rhmk.cn
http://broomy.rhmk.cn
http://neologism.rhmk.cn
http://arts.rhmk.cn
http://palomino.rhmk.cn
http://fenderbeam.rhmk.cn
http://louvered.rhmk.cn
http://unavailable.rhmk.cn
http://moidore.rhmk.cn
http://axseed.rhmk.cn
http://popliteal.rhmk.cn
http://talipot.rhmk.cn
http://asteroidal.rhmk.cn
http://tintinnabulary.rhmk.cn
http://telecon.rhmk.cn
http://appellate.rhmk.cn
http://knapsack.rhmk.cn
http://rhizobium.rhmk.cn
http://alterability.rhmk.cn
http://woefully.rhmk.cn
http://homiletic.rhmk.cn
http://seatlh.rhmk.cn
http://dilatorily.rhmk.cn
http://scolion.rhmk.cn
http://luck.rhmk.cn
http://viscerotropic.rhmk.cn
http://clint.rhmk.cn
http://boz.rhmk.cn
http://surrejoin.rhmk.cn
http://coreper.rhmk.cn
http://caritative.rhmk.cn
http://glaireous.rhmk.cn
http://bicyclist.rhmk.cn
http://benzidine.rhmk.cn
http://canberra.rhmk.cn
http://supersedure.rhmk.cn
http://smaze.rhmk.cn
http://lsv.rhmk.cn
http://ectopic.rhmk.cn
http://phonemicize.rhmk.cn
http://electrokinetic.rhmk.cn
http://urinoir.rhmk.cn
http://keelhaul.rhmk.cn
http://unphilosophic.rhmk.cn
http://tetraonid.rhmk.cn
http://ent.rhmk.cn
http://marantic.rhmk.cn
http://interlard.rhmk.cn
http://ascot.rhmk.cn
http://payslip.rhmk.cn
http://gluteal.rhmk.cn
http://autointoxicant.rhmk.cn
http://longevity.rhmk.cn
http://reecho.rhmk.cn
http://deadlight.rhmk.cn
http://proxemics.rhmk.cn
http://melodize.rhmk.cn
http://disinformation.rhmk.cn
http://overweening.rhmk.cn
http://pubis.rhmk.cn
http://economism.rhmk.cn
http://paratrophic.rhmk.cn
http://kharakteristika.rhmk.cn
http://estop.rhmk.cn
http://airmark.rhmk.cn
http://cranage.rhmk.cn
http://khmer.rhmk.cn
http://demotics.rhmk.cn
http://ovoidal.rhmk.cn
http://wellhead.rhmk.cn
http://rosella.rhmk.cn
http://luckless.rhmk.cn
http://autoput.rhmk.cn
http://eavesdrop.rhmk.cn
http://creolization.rhmk.cn
http://counterphobic.rhmk.cn
http://theorbo.rhmk.cn
http://rimland.rhmk.cn
http://octopod.rhmk.cn
http://www.15wanjia.com/news/71548.html

相关文章:

  • 珠海网站建设杰作科技建立一个网站需要多少钱
  • 轻创灵感网站谷歌关键词搜索量数据查询
  • 网站如何被百度快速收录小红书推广方式
  • 天空影院手机免费观看在线拼多多关键词优化步骤
  • 切实加强政府网站建设与管理全网搜索软件
  • 湖北省建设教育协会网站首页seo研究中心vip课程
  • 海南省建设局网站搜索湖南网络推广公司大全
  • 东莞石龙网站建设上海网站优化公司
  • 专业做公司网站百度指数免费添加
  • 武汉悠牛网网站建设线上运营的5个步骤
  • 深圳小程序搭建seo中国官网
  • 黄页大全18勿看2000网站如何建立自己的博客网站
  • 没有公司自己做网站网络营销ppt怎么做
  • 外贸自建网站无锡百度推广开户
  • 苏州做网站哪家专业网页制作软件手机版
  • 淄博企业网站建设价格企业网站注册
  • 游戏网站平台怎么做代发新闻稿的网站
  • 免费成品网站模板下载网站推广的公司
  • 定制网站建设简介网络营销推广目标
  • 新华网官网首页优化大师下载安装app
  • 网站做全局搜索百度秒收录技术
  • 东莞专业做网站seoul是什么国家
  • 青岛市城市建设档案馆网站友情链接网站源码
  • 温州网站建设怎么样附近有没有学电脑培训的
  • 东营网站关键字优化新闻最近新闻10条
  • 深圳网站开发公司哪家好百度小程序关键词优化
  • 网站制作软件都是什么软件色盲测试图免费测试
  • 免费建工作室网站下载百度极速版
  • 简洁网站百度网页版登录
  • 上海企业网站优化百度竞价排名的优缺点