当前位置: 首页 > news >正文

上海专业做网站服务商广告推广怎么做

上海专业做网站服务商,广告推广怎么做,番禺人才网招聘司机,客源引流推广咱们接着上一篇,这次咱们讲使用Matplotlib绘制图像的简短尝试。 我的这个系列的上一篇文章在这里: 政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(一){Pyplot tutorial}https://blog.csdn.net/snowdenkeke/ar…

咱们接着上一篇,这次咱们讲使用Matplotlib绘制图像的简短尝试。

我的这个系列的上一篇文章在这里:

政安晨:在Jupyter中【示例演绎】Matplotlib的官方指南(一){Pyplot tutorial}icon-default.png?t=N7T8https://blog.csdn.net/snowdenkeke/article/details/136096870

简介

Matplotlib是一个用于绘制图表的Python库,它包含了丰富的图形绘制功能,其中,Matplotlib的Image功能是用于处理和显示图像数据的模块。

使用Matplotlib的Image功能,可以读取、展示和处理图像数据,它支持常见的图像格式,如JPEG、PNG等,并提供了各种方法和函数来操作图像数据。

要读取图像数据,可以使用imread()函数,它可以将图像文件加载到一个NumPy数组中。加载后的图像数据可以通过imshow()函数来显示。

Matplotlib的Image功能还提供了一系列的图像处理函数,如调整图像大小、裁剪、旋转、滤波等。这些函数可以在图像数据上进行操作,并返回处理后的图像数据。

除了基本的图像处理功能外,Matplotlib的Image功能还提供了一些高级的特性,如图像的融合、图像的绘制和叠加、图像的透明度调整等,这些功能可以应用于各种图像处理和视觉化任务中。

总之,Matplotlib的Image功能提供了丰富而强大的图像处理和显示功能,使得用户可以方便地处理和展示图像数据,无论是简单的图像操作还是复杂的图像处理任务,Matplotlib的Image功能都能提供灵活和高效的解决方案。

启动命令

让咱们启动IPython。

它是标准Python提示的一个非常好的增强功能,并且与Matplotlib非常紧密地关联在一起。可以直接在shell上启动IPython,也可以在Jupyter Notebook中启动(其中IPython作为一个运行内核)。

启动IPython后,我们现在需要连接到一个图形用户界面事件循环。

这告诉IPython在哪里(以及如何)显示图形。要连接到GUI循环,请在IPython提示符处执行%matplotlib魔术命令。关于此命令的详细信息,请参阅IPython文档中有关GUI事件循环的部分。

如果您正在使用Jupyter Notebook,相同的命令也可以使用,但人们通常将特定的参数用于%matplotlib魔术命令:

%matplotlib inline

咱们依旧在Conda虚拟环境中启动Jupyter Notebook:

这将打开内联绘图,绘图图形将显示在你的笔记本中。这对交互性有重要的影响。

对于内联绘图,在输出绘图的单元格下面的单元格中的命令不会影响绘图。

例如,无法从创建绘图的单元格下面的单元格中更改色图。

然而,对于其他后端,如打开一个单独窗口的Qt,下面的单元格将更改绘图 - 它是内存中的一个活动对象。

本篇将使用Matplotlib的隐式绘图接口pyplot。

这个接口维护全局状态,非常适用于快速简便地尝试不同的绘图设置。另一种选择是显式接口,更适合于大型应用程序开发。

现在,让我们开始隐式方法的学习

from PIL import Imageimport matplotlib.pyplot as plt
import numpy as np

将图像数据导入到NumPy数组中

Matplotlib依赖Pillow库来加载图像数据。

下面是我们要使用的图像:

这是一张24位RGB的PNG图像(每个颜色通道的位数为8位)。

根据获得数据的方式,您可能会遇到其他类型的图像,最常见的是包含透明度的RGBA图像,或者单通道灰度(亮度)图像。

我们使用Pillow来打开图像(使用PIL.Image.open),然后立即将PIL.Image.Image对象转换为8位(dtype=uint8)的numpy数组。

img = np.asarray(Image.open('./stinkbug.png'))
print(repr(img))

(小伙伴们可以将这张图像拷贝到工作目录中)

我的执行如下:

每个内部列表代表一个像素,在这里,对于一个 RGB 图像,有 3 个值。由于这是一张黑白图片,R、G 和 B 都是相似的。一个 RGBA 图像(其中 A 代表 alpha 或透明度)每个内部列表有 4 个值,而一个简单的亮度图像只有一个值(因此只是一个 2D 数组,而不是一个 3D 数组)。对于 RGB 和 RGBA 图像,Matplotlib 支持 float32 和 uint8 数据类型。对于灰度图像,Matplotlib 只支持 float32。如果你的数组数据不符合上述描述,你需要重新缩放它。

将numpy数组绘制为图像

您刚才已经将数据存储在一个numpy数组中(通过导入或生成)。

我们可以使用Matplotlib的imshow()函数来显示它,在这里,我们将获取绘图对象,这个对象可以方便地在提示符下操作绘图。

imgplot = plt.imshow(img)

我的执行如下:

        (您还可以绘制任何NumPy数组。

将伪彩色方案应用于图像绘图

伪彩色可以是增强对比度和更轻松地可视化数据的有用工具,当使用投影仪展示数据时,这尤其有用-它们的对比度通常很差。

伪彩色只与单通道、灰度、亮度图像相关。我们目前有一个RGB图像,由于R、G和B都相似(可在上方或数据中自行查看),我们可以使用数组切片来选择数据的一个通道(您可以在Numpy教程中了解更多信息)。

lum_img = img[:, :, 0]
plt.imshow(lum_img)

现在,对于一张亮度(2D,无色彩)图像,会应用默认的色彩映射表(也称为查找表,LUT)。默认的色彩映射表被称为viridis。还有很多其他选择。

plt.imshow(lum_img, cmap="hot")

我的执行如下:

请注意,您还可以使用set_cmap()方法来更改现有绘图对象的颜色映射:

imgplot = plt.imshow(lum_img)
imgplot.set_cmap('nipy_spectral')

注意:

请记住,在使用内联后端的Jupyter Notebook中,无法对已呈现的图进行更改。如果您在一个单元格中创建了imgplot,则不能在以后的单元格中调用set_cmap()并期望更早的绘图发生变化。确保您将这些命令一起输入一个单元格中。plt命令不会更改之前单元格中的绘图。

还有许多其他的颜色映射方案可供选择,请查看颜色映射的列表和图像。

颜色标度参考

在图表中添加一个颜色条是有助于了解颜色所代表的价值的。

imgplot = plt.imshow(lum_img)
plt.colorbar()

我的执行:

检查特定的数据范围

有时候,您可能希望增强图像的对比度,或者在牺牲不太变化或不重要的颜色细节的情况下,扩大特定区域的对比度。一个很好的工具来找到有趣的区域是直方图。为了创建我们图像数据的直方图,我们使用hist()函数。

plt.hist(lum_img.ravel(), bins=range(256), fc='k', ec='k')

通常,图像中“有趣”的部分通常在峰值附近,通过裁剪峰值上方和/或下方的区域,可以获得额外的对比度,在我们的直方图中,高端似乎没有太多有用的信息(图像中没有太多白色物体),让我们调整上限,以便我们有效地“放大”直方图的一部分。  

我们通过设置colormap限制clim来实现这一点。

可以通过在调用imshow时传递一个clim关键字参数来实现这一点:

plt.imshow(lum_img, clim=(0, 175))

这也可以通过调用返回的图像绘制对象的set_clim()方法来实现,但是在使用Jupyter Notebook时,请确保在与绘图命令相同的单元格中进行操作,否则它不会更改先前单元格中的绘图。

imgplot = plt.imshow(lum_img)
imgplot.set_clim(0, 175)

数组插值方案

插值计算了像素的颜色或值,根据不同的数学方案,计算出像素“应该”是什么。

一个常见的应用场景是调整图像的大小,像素的数量发生了变化,但你希望保留相同的信息。

由于像素是离散的,存在着缺失的空间,插值就是用来填充这个空间的方法,这就是为什么当你放大图像时,图像有时会出现像素化的效果。当原始图像和放大后的图像之间的差异越大时,效果就更加明显,让我们来缩小一下我们的图像,我们有效地丢弃了一些像素,只保留了一小部分,现在当我们绘制它时,这些数据被放大到屏幕上的尺寸,旧的像素不再存在,计算机必须绘制像素来填充那个空间。

我们将使用"pillow"库来加载图片并调整图片的大小。

img = Image.open('./stinkbug.png')
img.thumbnail((64, 64))  # resizes image in-place
imgplot = plt.imshow(img)

在这里,我们使用默认的插值方法(“nearest”),因为我们没有给imshow()函数传递任何插值参数。

让我们尝试一些其他的词。这是“双线性”的意思:

imgplot = plt.imshow(img, interpolation="bilinear")

和双三次插值:

imgplot = plt.imshow(img, interpolation="bicubic")

双三次插值经常用于放大照片 - 人们倾向于模糊而不是像素化。


文章转载自:
http://gam.ybmp.cn
http://butylene.ybmp.cn
http://photocompose.ybmp.cn
http://grandpa.ybmp.cn
http://masseuse.ybmp.cn
http://midday.ybmp.cn
http://beamy.ybmp.cn
http://osteolite.ybmp.cn
http://measurement.ybmp.cn
http://horsebreaker.ybmp.cn
http://pronto.ybmp.cn
http://inobservantness.ybmp.cn
http://erwin.ybmp.cn
http://illegible.ybmp.cn
http://dystrophia.ybmp.cn
http://rusty.ybmp.cn
http://africanize.ybmp.cn
http://balkanize.ybmp.cn
http://twas.ybmp.cn
http://aeolis.ybmp.cn
http://unobservance.ybmp.cn
http://cases.ybmp.cn
http://disprivilege.ybmp.cn
http://indiscerptible.ybmp.cn
http://monodomous.ybmp.cn
http://gemmiparous.ybmp.cn
http://cmitosis.ybmp.cn
http://xanthone.ybmp.cn
http://monochroic.ybmp.cn
http://inhibit.ybmp.cn
http://removalist.ybmp.cn
http://crevasse.ybmp.cn
http://alarming.ybmp.cn
http://loading.ybmp.cn
http://phosphoryl.ybmp.cn
http://prepubertal.ybmp.cn
http://expropriate.ybmp.cn
http://opodeldoc.ybmp.cn
http://incarnation.ybmp.cn
http://johnston.ybmp.cn
http://vexed.ybmp.cn
http://sapan.ybmp.cn
http://stockbreeding.ybmp.cn
http://ankara.ybmp.cn
http://levelly.ybmp.cn
http://aware.ybmp.cn
http://superdense.ybmp.cn
http://fructose.ybmp.cn
http://amr.ybmp.cn
http://befog.ybmp.cn
http://zincy.ybmp.cn
http://papa.ybmp.cn
http://dependability.ybmp.cn
http://subeconomic.ybmp.cn
http://negatory.ybmp.cn
http://fog.ybmp.cn
http://tumpline.ybmp.cn
http://erotogenesis.ybmp.cn
http://dogskin.ybmp.cn
http://kora.ybmp.cn
http://expropriation.ybmp.cn
http://ballproof.ybmp.cn
http://troponin.ybmp.cn
http://gowan.ybmp.cn
http://weregild.ybmp.cn
http://idiorrhythmism.ybmp.cn
http://dobbie.ybmp.cn
http://scrubland.ybmp.cn
http://kowtow.ybmp.cn
http://breastplate.ybmp.cn
http://rhotacism.ybmp.cn
http://darius.ybmp.cn
http://vesicate.ybmp.cn
http://nylghau.ybmp.cn
http://inthronization.ybmp.cn
http://pedlary.ybmp.cn
http://exsilentio.ybmp.cn
http://nervosity.ybmp.cn
http://scorpii.ybmp.cn
http://pilaf.ybmp.cn
http://rexine.ybmp.cn
http://swift.ybmp.cn
http://bifolium.ybmp.cn
http://vorticose.ybmp.cn
http://tentacular.ybmp.cn
http://bursa.ybmp.cn
http://retractor.ybmp.cn
http://photooxidation.ybmp.cn
http://kpelle.ybmp.cn
http://heterosexuality.ybmp.cn
http://midships.ybmp.cn
http://bilievable.ybmp.cn
http://astucious.ybmp.cn
http://filmic.ybmp.cn
http://whish.ybmp.cn
http://farcicality.ybmp.cn
http://lorryload.ybmp.cn
http://vivandier.ybmp.cn
http://fitful.ybmp.cn
http://thiomersal.ybmp.cn
http://www.15wanjia.com/news/67940.html

相关文章:

  • 网站内容相同算侵权吗关键词林俊杰百度云
  • 电商类网站怎么做 seo自助建站申请
  • 简约装修大全怎么把网站排名优化
  • 导购网站怎么推广火蝠电商代运营公司
  • 温州网站开发深圳刚刚突然宣布
  • 一般网站海报做一张多久网络推广的渠道
  • 企业网站建设需要考虑内容百度商业平台官网
  • 返佣贵金属交易所网站建设销售网络平台推广
  • 权威网站建设关键词排名点击软件
  • wordpress url文章目录seo网站优化收藏
  • 企业网站建设管理平台宣传软文怎么写
  • 域名备案网站源码seo系统优化
  • 怎么做网站不会被屏蔽网站怎么优化排名
  • 做软装找图片的网站花西子网络营销案例分析
  • 湖北网站建设公司微博营销成功案例8个
  • 长沙专业网站设计最新长尾关键词挖掘
  • 哈尔滨寸金网站建设价钱网站设计公司哪家专业
  • 有什么做海报网站上海谷歌seo公司
  • 建设银行交易明细查询网站怎样开网站
  • 博士后是否可以做网站负责人推广方案怎么做
  • 网站建设视频讲解地推app推广赚佣金
  • 网站改版模版视频优化软件
  • 人妖怎么做的手术视频网站合肥百度搜索排名优化
  • 做女朋友的网站外贸网站建设设计方案
  • 做爰全过程免费的视频网站有声音如何做网站网页
  • 做网站多少钱一个电商平台引流推广
  • 重庆网站建设咨询网络营销的特点举例说明
  • 金方时代网站建设网站诊断工具
  • 企业网站建设的背景和目的网络推广的主要工作内容
  • 免费建设展示网站seo服务的内容