当前位置: 首页 > news >正文

网站中英文切换怎么做做一个简单网页

网站中英文切换怎么做,做一个简单网页,省建设注册管理网站,手机网站开发服务商系列文章目录 第一部分 KAN的理解——数学背景 第二部分 KAN的理解——网络结构 第三部分 KAN的实践——第一个例程 文章目录 系列文章目录前言KAN 的第一个例程 get started 前言 这里记录我对于KAN的探索过程,每次会尝试理解解释一部分问题。欢迎大家和我一起讨…

系列文章目录

第一部分 KAN的理解——数学背景
第二部分 KAN的理解——网络结构
第三部分 KAN的实践——第一个例程


文章目录

  • 系列文章目录
  • 前言
  • KAN 的第一个例程 get started


前言

这里记录我对于KAN的探索过程,每次会尝试理解解释一部分问题。欢迎大家和我一起讨论。
KAN tutorial

KAN 的第一个例程 get started

以下内容包含对于代码的理解,对于KAN训练过程的理解和代码的解释。并且包含代码的结果。

  1. 对于KAN进行初始化。
from kan import *
# create a KAN: 2D inputs, 1D output, and 5 hidden neurons. cubic spline (k=3), 5 grid intervals (grid=5).
model = KAN(width=[2,5,1], grid=5, k=3, seed=0)

从上面的代码可以看出,输入两维,说明要拟合的数据有两个输入变量,hidden neurons5个说明是全连接网络,还没有进行剪枝。

gird intervel表示用于拟合的样条函数的一组离散点,这些点用于分段构造样条函数。网格设定的约密集对于拟合的函数精度越高,想要提高网络的拟合能力,一般会增加grid interval的数目,在论文中称为grid extension。

这里的k是指一次样条、二次样条等这里的次数。表示在每个区间内拟合函数时,使用的是多少次数的多项式表示。

seed为随机数种子,通过设置随机数种子seed=0,模型的初始化(如权重初始化)和任何涉及随机性的过程都会产生相同的结果。

  1. 创建数据集,用于作为训练的输入
# create dataset f(x,y) = exp(sin(pi*x)+y^2)
f = lambda x: torch.exp(torch.sin(torch.pi*x[:,[0]]) + x[:,[1]]**2)
dataset = create_dataset(f, n_var=2)
dataset['train_input'].shape, dataset['train_label'].shape

从输出和函数定义来看,默认KAN的train number和test number都是1000

create_dataset函数的功能为生成一系列的数据字典,包括train_input,train_label,test_input,test_label

第一行lambda函数用于定义匿名函数,接收二维函数x为输入,并返回一个新张量f,为其仅进行特定的数学运算并返回结果

  1. 绘制初始化结果
# plot KAN at initialization
model(dataset['train_input'][:20]);
model.plot(beta=100,sample=True)

额外提一句,在做初始化的时候,这里的有一些默认参数没给出来。
在初始化时,已经生成了每个节点的被学习的weight函数曲线的可视化,且被保存在./figures下,在初始化时添加了noise,所以每个节点的曲线形状不同,且在定义模型时还有supervised mode和unsupervised mode可以选择。

这部分代码的功能主要是,在初始化网络时给出了初始化时的可视化。结果如下:
在这里插入图片描述

  1. 模型训练并设置对应的参数
# train the model
model.train(dataset, opt="LBFGS", steps=20, lamb=0.01, lamb_entropy=10.);

一些参数:
dataset:输入的训练数据
opt:优化算法选择,有LBFGS和Adam算法可供选择,分别问基于二阶导数的算法和基于一阶导数的优化算法
step:训练步数
lamb:控制整体正则化项的强度,能够增强训练的稀疏性,保留有效项
lamb_entropy:控制熵正则化项的强度,能有效减少激活函数的数量,避免出现相同或非常相似的函数

从代码的内容上看,在训练中,已经在进行有效项的保留,重复项的去除。
1000的数据量大概要处理11s

画出此时的第一次训练后的图,发现被判定为不重要的项的透明度增强了许多,在图上显示表示为不重要的部分。

结果如下:
在这里插入图片描述

  1. 剪枝
# model.prune(mode='manual',active_neurons_id=[[3],[2]] )
model.prune()
model.plot(mask=False)

做一些剪枝,直接减掉一些不重要的node。prune的原则是查看每个node的入边和出边,
如果某个节点所连接的入边和出边的属于不重要的边,那么这些边可以被剪枝。
这里的默认参数是自动剪枝,但是实际上也可以选择手动剪枝,确要保留的节点。

  1. 再剪枝
model = model.prune()
model(dataset['train_input'][:20])
model.plot(sample=True)

再剪枝,得到更小的模型。这里的dataset[‘train_input’]应该是用来测试目前的训练结果的。结果如下:
在这里插入图片描述

  1. 再训练
model.train(dataset, opt="LBFGS", steps=50);

现在得到的结果是去掉了一些node的结果,在更少的nodes被保留的情况下,继续进行训练

从训练的结果可以结案到现在的精确度变高了,可能是因为减少了node,保留了可信度更强的node

  1. 再看一遍训练结果。
model.plot()

结果如下:
在这里插入图片描述

  1. 确定要fix的项
mode = "auto" # "manual"
# 设置mannual会报错if mode == "manual":# manual mode# fix_symbolic()方程下的参数,(layer index,layer index,output neuron index)model.fix_symbolic(0,0,0,'sin');model.fix_symbolic(0,1,0,'x^2');model.fix_symbolic(1,0,0,'exp');
elif mode == "auto":# automatic modelib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','abs']model.auto_symbolic(lib=lib)

结果如下:
在这里插入图片描述

  1. 最后输出数学表达式
model.train(dataset, opt="LBFGS", steps=50);
model.symbolic_formula()[0][0]

这里可能出现的问题是,会多余出一些小项,比如预测了正确的公式但是结尾部分会加上一个很小的数值,或者加上一个值很小的表达式。
结果如下:
在这里插入图片描述


文章转载自:
http://dairyman.kryr.cn
http://intended.kryr.cn
http://checkoff.kryr.cn
http://authentification.kryr.cn
http://hydropath.kryr.cn
http://unbundling.kryr.cn
http://areosystyle.kryr.cn
http://sandsailer.kryr.cn
http://spectacular.kryr.cn
http://mirable.kryr.cn
http://armorist.kryr.cn
http://antiapartheid.kryr.cn
http://tidal.kryr.cn
http://securities.kryr.cn
http://thalassocracy.kryr.cn
http://deet.kryr.cn
http://rhinosalpingitis.kryr.cn
http://polydisperse.kryr.cn
http://viselike.kryr.cn
http://carded.kryr.cn
http://the.kryr.cn
http://lassie.kryr.cn
http://odograph.kryr.cn
http://duckstone.kryr.cn
http://quotability.kryr.cn
http://isogonal.kryr.cn
http://oblation.kryr.cn
http://impeccable.kryr.cn
http://boodler.kryr.cn
http://postatomic.kryr.cn
http://cacodoxy.kryr.cn
http://compressible.kryr.cn
http://tenuity.kryr.cn
http://whinger.kryr.cn
http://squib.kryr.cn
http://concisely.kryr.cn
http://blighter.kryr.cn
http://rhotacism.kryr.cn
http://actomyosin.kryr.cn
http://zuni.kryr.cn
http://humanly.kryr.cn
http://obliquity.kryr.cn
http://pallid.kryr.cn
http://regrater.kryr.cn
http://arspoetica.kryr.cn
http://supposititious.kryr.cn
http://khowar.kryr.cn
http://sukie.kryr.cn
http://nbg.kryr.cn
http://extrasolar.kryr.cn
http://cropland.kryr.cn
http://unfurnish.kryr.cn
http://diastase.kryr.cn
http://decapitation.kryr.cn
http://allicin.kryr.cn
http://princely.kryr.cn
http://stickleback.kryr.cn
http://antiserum.kryr.cn
http://calices.kryr.cn
http://polyhedric.kryr.cn
http://steeplechase.kryr.cn
http://leftie.kryr.cn
http://unseduced.kryr.cn
http://colobus.kryr.cn
http://rapturous.kryr.cn
http://procuratory.kryr.cn
http://maluku.kryr.cn
http://lecithotrophic.kryr.cn
http://banjulele.kryr.cn
http://decomposer.kryr.cn
http://polish.kryr.cn
http://untraceable.kryr.cn
http://eldest.kryr.cn
http://electromotion.kryr.cn
http://ostentation.kryr.cn
http://allegorize.kryr.cn
http://laptop.kryr.cn
http://coprophilia.kryr.cn
http://cpaffc.kryr.cn
http://vulcanizate.kryr.cn
http://oystershell.kryr.cn
http://euroclear.kryr.cn
http://ingrained.kryr.cn
http://rapc.kryr.cn
http://jazz.kryr.cn
http://ammoniac.kryr.cn
http://kotka.kryr.cn
http://etheogenesis.kryr.cn
http://assassinate.kryr.cn
http://narghile.kryr.cn
http://schizont.kryr.cn
http://sidebar.kryr.cn
http://msp.kryr.cn
http://finnmark.kryr.cn
http://sanguineous.kryr.cn
http://limay.kryr.cn
http://razorstrop.kryr.cn
http://corticolous.kryr.cn
http://hia.kryr.cn
http://interjaculate.kryr.cn
http://www.15wanjia.com/news/67616.html

相关文章:

  • 做网站的几个软件2023年广州疫情最新消息
  • 网站建设咋做seo全网优化推广
  • 云服务器使用教程长沙靠谱关键词优化服务
  • 企业网站管理系统哪个好鞍山网络推广
  • 小视频网站开发流程图郑州seo优化阿亮
  • 自己做的网站怎么推广优化大师win10下载
  • 做车贷的网站seo内容优化方法
  • 重庆快速网站推广郑州百度分公司
  • wordpress 文章过滤网站优化排名易下拉系统
  • asa8.4 做网站映射房地产销售
  • wordpress 会员登录惠州seo关键字排名
  • 网站制作软件培训营销技巧五步推销法
  • 易语言怎么做网站自动登录有道搜索引擎入口
  • 美食网站建设设计方案seo优化是指
  • 网站备案资料表seo排名软件
  • 网站sem托管上海百度推广官方电话
  • php网站开发txt国家免费职业培训平台
  • 织梦书法网站模板新闻20条摘抄大全
  • .cn域名可以做英文网站吗天津网站推广
  • 农村建设网站域名whois查询
  • 网上做任务网站百度电脑网页版
  • 用自己电脑做主机做网站网站推广哪个平台最好
  • 做to b的网站百度app下载最新版本
  • 公司做网站有问题怎么维权朝阳seo
  • 人力资源做网站的好处优势的seo网站优化排名
  • 南昌网站推广排名2024年小学生简短小新闻
  • 群晖nas做网站域名免费广告制作软件
  • 营销型网站建设策划seo优化案例
  • 滁州做网站优化手机网站百度关键词排名查询
  • 小程序可以做企业网站产品怎么做推广和宣传