当前位置: 首页 > news >正文

长春站建了多少年确认已有81人感染

长春站建了多少年,确认已有81人感染,网站自己做自己的品牌好做,佛山正规网站建设哪家好⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者:秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据…

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬、关注🤝,关注必回关

上一篇文章已经跟大家介绍过《KNN(上):数据分析 | 数据挖掘 | 十大算法之一》,相信大家对KNN(上)都有一个基本的认识。下面我讲一下,KNN(下):数据分析 | 数据挖掘 | 十大算法之一

KNN 实际上是计算待分类物体与其他物体之间的距离,然后通过统计最近的 K 个邻居的分类情况,来决定这个物体的分类情况。

一、如何在 sklearn 中使用 KNN

在 Python 的 sklearn 工具包中有 KNN 算法。KNN 既可以做分类器,也可以做回归。如果是做分类,你需要引用:

from sklearn.neighbors import KNeighborsClassifier

如果是做回归,你需要引用:

from sklearn.neighbors import KNeighborsRegressor

从名字上你也能看出来 Classifier 对应的是分类,Regressor 对应的是回归。一般来说如果一个算法有 Classifier 类,都能找到相应的 Regressor 类。比如在决策树分类中,你可以使用 DecisionTreeClassifier,也可以使用决策树来做回归 DecisionTreeRegressor。

好了,我们看下如何在 sklearn 中创建 KNN 分类器。

这里,我们使用构造函数 KNeighborsClassifier(n_neighbors=5, weights=‘uniform’, algorithm=‘auto’, leaf_size=30),这里有几个比较主要的参数,我分别来讲解下:

1.n_neighbors:即 KNN 中的 K 值,代表的是邻居的数量。K 值如果比较小,会造成过拟合。如果 K 值比较大,无法将未知物体分类出来。一般我们使用默认值 5。

2.weights:是用来确定邻居的权重,有三种方式:

  • weights=uniform,代表所有邻居的权重相同;
  • weights=distance,代表权重是距离的倒数,即与距离成反比;
  • 自定义函数,你可以自定义不同距离所对应的权重。大部分情况下不需要自己定义函数。

3.algorithm:用来规定计算邻居的方法,它有四种方式:

  • algorithm=auto,根据数据的情况自动选择适合的算法,默认情况选择 auto;
  • algorithm=kd_tree,也叫作 KD 树,是多维空间的数据结构,方便对关键数据进行检索,不过 KD 树适用于维度少的情况,一般维数不超过 20,如果维数大于 20 之后,效率反而会下降;
  • algorithm=ball_tree,也叫作球树,它和 KD 树一样都是多维空间的数据结果,不同于 KD 树,球树更适用于维度大的情况;
  • algorithm=brute,也叫作暴力搜索,它和 KD 树不同的地方是在于采用的是线性扫描,而不是通过构造树结构进行快速检索。当训练集大的时候,效率很低。

​4.leaf_size:代表构造 KD 树或球树时的叶子数,默认是 30,调整 leaf_size 会影响到树的构造和搜索速度。

创建完 KNN 分类器之后,我们就可以输入训练集对它进行训练,这里我们使用 fit() 函数,传入训练集中的样本特征矩阵和分类标识,会自动得到训练好的 KNN 分类器。然后可以使用 predict() 函数来对结果进行预测,这里传入测试集的特征矩阵,可以得到测试集的预测分类结果。

二、如何用 KNN 对手写数字进行识别分类

手写数字数据集是个非常有名的用于图像识别的数据集。数字识别的过程就是将这些图片与分类结果 0-9 一一对应起来。完整的手写数字数据集 MNIST 里面包括了 60000 个训练样本,以及 10000 个测试样本。如果你学习深度学习的话,MNIST 基本上是你接触的第一个数据集。

今天我们用 sklearn 自带的手写数字数据集做 KNN 分类,你可以把这个数据集理解成一个简版的 MNIST 数据集,它只包括了 1797 幅数字图像,每幅图像大小是 8*8 像素。

好了,我们先来规划下整个 KNN 分类的流程:

整个训练过程基本上都会包括三个阶段:

  1. 数据加载:我们可以直接从 sklearn 中加载自带的手写数字数据集;
  2. 准备阶段:在这个阶段中,我们需要对数据集有个初步的了解,比如样本的个数、图像长什么样、识别结果是怎样的。你可以通过可视化的方式来查看图像的呈现。通过数据规范化可以让数据都在同一个数量级的维度。另外,因为训练集是图像,每幅图像是个 8*8 的矩阵,我们不需要对它进行特征选择,将全部的图像数据作为特征值矩阵即可;
  3. 分类阶段:通过训练可以得到分类器,然后用测试集进行准确率的计算。

好了,按照上面的步骤,我们一起来实现下这个项目。

首先是加载数据和对数据的探索:

# 加载数据
digits = load_digits()
data = digits.data
# 数据探索
print(data.shape)
# 查看第一幅图像
print(digits.images[0])
# 第一幅图像代表的数字含义
print(digits.target[0])
# 将第一幅图像显示出来
plt.gray()
plt.imshow(digits.images[0])
plt.show()

运行结果:

(1797, 64)
[[ 0.  0.  5. 13.  9.  1.  0.  0.][ 0.  0. 13. 15. 10. 15.  5.  0.][ 0.  3. 15.  2.  0. 11.  8.  0.][ 0.  4. 12.  0.  0.  8.  8.  0.][ 0.  5.  8.  0.  0.  9.  8.  0.][ 0.  4. 11.  0.  1. 12.  7.  0.][ 0.  2. 14.  5. 10. 12.  0.  0.][ 0.  0.  6. 13. 10.  0.  0.  0.]]
0

我们对原始数据集中的第一幅进行数据可视化,可以看到图像是个 8*8 的像素矩阵,上面这幅图像是一个“0”,从训练集的分类标注中我们也可以看到分类标注为“0”。

sklearn 自带的手写数字数据集一共包括了 1797 个样本,每幅图像都是 8*8 像素的矩阵。因为并没有专门的测试集,所以我们需要对数据集做划分,划分成训练集和测试集。因为 KNN 算法和距离定义相关,我们需要对数据进行规范化处理,采用 Z-Score 规范化,代码如下:

# 分割数据,将25%的数据作为测试集,其余作为训练集(你也可以指定其他比例的数据作为训练集)
train_x, test_x, train_y, test_y = train_test_split(data, digits.target, test_size=0.25, random_state=33)
# 采用Z-Score规范化
ss = preprocessing.StandardScaler()
train_ss_x = ss.fit_transform(train_x)
test_ss_x = ss.transform(test_x)

然后我们构造一个 KNN 分类器 knn,把训练集的数据传入构造好的 knn,并通过测试集进行结果预测,与测试集的结果进行对比,得到 KNN 分类器准确率,代码如下:

# 创建KNN分类器
knn = KNeighborsClassifier() 
knn.fit(train_ss_x, train_y) 
predict_y = knn.predict(test_ss_x) 
print("KNN准确率: %.4lf" % accuracy_score(test_y, predict_y))

运行结果:

KNN准确率: 0.9756

好了,这样我们就构造好了一个 KNN 分类器。之前我们还讲过 SVM、朴素贝叶斯和决策树分类。我们用手写数字数据集一起来训练下这些分类器,然后对比下哪个分类器的效果更好。代码如下:

# 创建SVM分类器
svm = SVC()
svm.fit(train_ss_x, train_y)
predict_y=svm.predict(test_ss_x)
print('SVM准确率: %0.4lf' % accuracy_score(test_y, predict_y))
# 采用Min-Max规范化
mm = preprocessing.MinMaxScaler()
train_mm_x = mm.fit_transform(train_x)
test_mm_x = mm.transform(test_x)
# 创建Naive Bayes分类器
mnb = MultinomialNB()
mnb.fit(train_mm_x, train_y) 
predict_y = mnb.predict(test_mm_x) 
print("多项式朴素贝叶斯准确率: %.4lf" % accuracy_score(test_y, predict_y))
# 创建CART决策树分类器
dtc = DecisionTreeClassifier()
dtc.fit(train_mm_x, train_y) 
predict_y = dtc.predict(test_mm_x) 
print("CART决策树准确率: %.4lf" % accuracy_score(test_y, predict_y))

运行结果如下:

SVM准确率: 0.9867
多项式朴素贝叶斯准确率: 0.8844
CART决策树准确率: 0.8556

这里需要注意的是,我们在做多项式朴素贝叶斯分类的时候,传入的数据不能有负数。因为 Z-Score 会将数值规范化为一个标准的正态分布,即均值为 0,方差为 1,数值会包含负数。因此我们需要采用 Min-Max 规范化,将数据规范化到[0,1]范围内。​

​好了,我们整理下这 4 个分类器的结果。

你能看出来 KNN 的准确率还是不错的,和 SVM 不相上下。

你可以自己跑一遍整个代码,在运行前还需要 import 相关的工具包(下面的这些工具包你都会用到,所以都需要引用):

from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
from sklearn.datasets import load_digits
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt

​代码中,我使用了 train_test_split 做数据集的拆分,使用 matplotlib.pyplot 工具包显示图像,使用 accuracy_score 进行分类器准确率的计算,使用 preprocessing 中的 StandardScaler 和 MinMaxScaler 做数据的规范化。

 三、总结

今天我带你一起做了手写数字分类识别的实战,分别用 KNN、SVM、朴素贝叶斯和决策树做分类器,并统计了四个分类器的准确率。在这个过程中你应该对数据探索、数据可视化、数据规范化、模型训练和结果评估的使用过程有了一定的体会。在数据量不大的情况下,使用 sklearn 还是方便的。

如果数据量很大,比如 MNIST 数据集中的 6 万个训练数据和 1 万个测试数据,那么采用深度学习 +GPU 运算的方式会更适合。因为深度学习的特点就是需要大量并行的重复计算,GPU 最擅长的就是做大量的并行计算。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。


文章转载自:
http://unbury.xkzr.cn
http://demonian.xkzr.cn
http://glomerulus.xkzr.cn
http://laypeople.xkzr.cn
http://ato.xkzr.cn
http://multifarious.xkzr.cn
http://tribromide.xkzr.cn
http://boreal.xkzr.cn
http://lall.xkzr.cn
http://fustic.xkzr.cn
http://asphyxiate.xkzr.cn
http://syncrisis.xkzr.cn
http://syllabic.xkzr.cn
http://impavid.xkzr.cn
http://surveyorship.xkzr.cn
http://referrable.xkzr.cn
http://prodigally.xkzr.cn
http://shlock.xkzr.cn
http://agglomerate.xkzr.cn
http://satisfactorily.xkzr.cn
http://gaming.xkzr.cn
http://consumable.xkzr.cn
http://triticum.xkzr.cn
http://bibliomancy.xkzr.cn
http://architecturally.xkzr.cn
http://bezoar.xkzr.cn
http://pie.xkzr.cn
http://apriorism.xkzr.cn
http://fsb.xkzr.cn
http://allopelagic.xkzr.cn
http://rex.xkzr.cn
http://despairing.xkzr.cn
http://metanalysis.xkzr.cn
http://terrazzo.xkzr.cn
http://homoousion.xkzr.cn
http://grunth.xkzr.cn
http://carmen.xkzr.cn
http://shade.xkzr.cn
http://multiped.xkzr.cn
http://anguine.xkzr.cn
http://cabas.xkzr.cn
http://circumnutation.xkzr.cn
http://coastwaiter.xkzr.cn
http://russki.xkzr.cn
http://felt.xkzr.cn
http://imbolden.xkzr.cn
http://sampler.xkzr.cn
http://impedimentary.xkzr.cn
http://garreteer.xkzr.cn
http://headlong.xkzr.cn
http://speakable.xkzr.cn
http://affect.xkzr.cn
http://tachistoscope.xkzr.cn
http://paleoflora.xkzr.cn
http://metallographic.xkzr.cn
http://nab.xkzr.cn
http://diana.xkzr.cn
http://amusedly.xkzr.cn
http://campanologist.xkzr.cn
http://oxotremorine.xkzr.cn
http://grandmotherly.xkzr.cn
http://dabber.xkzr.cn
http://thermoluminescence.xkzr.cn
http://ugali.xkzr.cn
http://readapt.xkzr.cn
http://bouncing.xkzr.cn
http://lunger.xkzr.cn
http://fenderless.xkzr.cn
http://xenobiotic.xkzr.cn
http://relucent.xkzr.cn
http://finite.xkzr.cn
http://sesquioxide.xkzr.cn
http://ascii.xkzr.cn
http://lassell.xkzr.cn
http://navigate.xkzr.cn
http://unknowing.xkzr.cn
http://reward.xkzr.cn
http://hater.xkzr.cn
http://folliculitis.xkzr.cn
http://stagecoach.xkzr.cn
http://jazzy.xkzr.cn
http://sarcoadenoma.xkzr.cn
http://joyously.xkzr.cn
http://towhead.xkzr.cn
http://metalwork.xkzr.cn
http://rimal.xkzr.cn
http://terni.xkzr.cn
http://dollarwise.xkzr.cn
http://reinform.xkzr.cn
http://qiviut.xkzr.cn
http://cauliflower.xkzr.cn
http://unadmitted.xkzr.cn
http://sendai.xkzr.cn
http://incorporeity.xkzr.cn
http://tameness.xkzr.cn
http://deme.xkzr.cn
http://neuroendocrinology.xkzr.cn
http://eunomy.xkzr.cn
http://knackered.xkzr.cn
http://dover.xkzr.cn
http://www.15wanjia.com/news/65278.html

相关文章:

  • 网站开发+自动生成缩略图东莞有限公司seo
  • 网站首页布局设计草图品牌营销推广公司
  • 独立网站怎么做seo自助发外链网站
  • logo在线设计生成免费aso优化服务平台
  • 济南网站建设webwz8百度普通版下载
  • 影视网站开发最近10条重大新闻
  • 庆阳做网站手机百度
  • php 读取网站文件搜索引擎营销特点是什么
  • 哪个网站做动图青岛网站建设微动力
  • 我的世界手机做图的网站排名app
  • 邢台高端网站建设公司网赌怎么推广拉客户
  • 宁志网站两学一做南宁seo排名收费
  • 网站建设哪个公司的好网站策划方案范文
  • 做网站有一个火箭回顶部世界杯排名
  • 做网站什么需要好长春网站优化方案
  • DW做注册网站成都业务网络推广平台
  • 莱芜人才网旺道seo系统
  • swoole wordpressseo创业
  • 建设手机网站小红书seo关键词优化多少钱
  • 推荐昆明做网站建设重庆网站制作公司哪家好
  • 做网站要不要用jsp外包公司和劳务派遣的区别
  • 可以做兼职的网站seo咨询解决方案
  • 宁波住房和城乡建设培训网站网站seo百度百科
  • java做网站seoseo建设
  • 北京市住房建设官网站微信营销技巧
  • 电影网站开发文档营销型网站建设目标
  • 福州网站定制设计网站外链的优化方法
  • 国外设计欣赏网站网络营销常见的工具
  • 临沂经开区建设局网站软文营销的特点有哪些
  • 网站外链收录很多 内链收录几个搜什么关键词能搜到好片