当前位置: 首页 > news >正文

重庆建设施工安全管理网站十大广告公司排名

重庆建设施工安全管理网站,十大广告公司排名,做电池网站的引导页,女女男做 网站目录 1. 最短路问题介绍2. 算法原理和代码实现(含题目链接)1926.迷宫中离入口最近的出口433.最小基因变化127.单词接龙675.为高尔夫比赛砍树 3. 算法总结 1. 最短路问题介绍 最短路径问题是图论中的一类十分重要的问题。本篇文章只介绍边权为1(或边权相同)的最简单的最短路径问…

目录

  • 1. 最短路问题介绍
  • 2. 算法原理和代码实现(含题目链接)
    • 1926.迷宫中离入口最近的出口
    • 433.最小基因变化
    • 127.单词接龙
    • 675.为高尔夫比赛砍树
  • 3. 算法总结

1. 最短路问题介绍

最短路径问题是图论中的一类十分重要的问题。本篇文章只介绍边权为1(或边权相同)的最简单的最短路径问题所谓边权,就是两点之间的距离

这类问题通俗的说就是告诉你起点和终点,要你找出最短的路径或是最短路径是多少
在这里插入图片描述

解决方法:从起点开始,来一次bfs即可
A出队列后,向外扩展一层,B,C入队列,注意,此时出队列要B,C同时出(其实是写一个for循环,先B后C)

那如何计算出最短路径是多少呢?
扩展的层数,就是最短路的长度

2. 算法原理和代码实现(含题目链接)

1926.迷宫中离入口最近的出口

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

算法原理:
我们可以从起点开始层序遍历,并且在遍历的过程中记录当前遍历的层数。这样就能在找到出⼝的时候,得到起点到出⼝的最短距离

把题目抽象为:从当前位置出发,到离边界上的那个点的最短路程是多少
在这里插入图片描述

细节/技巧问题:

(1) 人当前所在位置不能当做出口
(2) 出口:与边界相邻的空格就是出口
(3) 人在移动时仅需走到出口位置即可,不需要走出迷宫

代码实现:

class Solution 
{int dx[4] = {0,0,1,-1};int dy[4] = {1,-1,0,0};public:int nearestExit(vector<vector<char>>& maze, vector<int>& e) {int m = maze.size(), n = maze[0].size();bool vis[m][n];memset(vis, 0, sizeof(vis));queue<pair<int, int>> q;q.push({e[0], e[1]});vis[e[0]][e[1]] = true;int step = 0; // 记录步数while(q.size()){step++;int sz = q.size();// 假设进去sz个,要同时出for(int i = 0; i < sz; i++){auto[a,b] = q.front();q.pop();for(int j = 0; j < 4; j++){int x = a+dx[j], y = b+dy[j];if(x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == '.' && !vis[x][y]){// 判断是否到达出口了if(x == 0 || x == m-1 || y == 0 || y == n-1)return step;else{q.push({x, y});vis[x][y] = true;}}}}}return -1;}
};

433.最小基因变化

在这里插入图片描述
在这里插入图片描述

算法原理:

如果将每次字符串的变换抽象成图中的两个点和⼀条边的话,问题就变成了边权为1的最短路题
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/36d6a38e830a46e5a5c0fe31fa7f8fc5.png

其他细节/技巧问题:

(1) 原字符串每个字符变化后一定存在相同的,此时要用哈希表来标记搜索的状态,每次变化后都扔进哈希表中
(2) 如何枚举出所有的变化情况呢?直接两层for循环
(3) 变化成哪种字符串才能入队列呢?变化后的字符串在基因库中存在时,才队列。所以把基因库里的字符串扔进哈希表中,每次变化后都要判断是否在基因库中

代码实现:

class Solution 
{
public:int minMutation(string startGene, string endGene, vector<string>& bank) {unordered_set<string> vis; // 记录字符串是否搜索过 unordered_set<string> hash(bank.begin(), bank.end()); // 判断变化后的字符串是否在库中//处理特殊情况if(startGene == endGene) return 0;if(!hash.count(endGene)) return -1;queue<string> q;q.push(startGene);vis.insert(startGene);string change = "AGCT";int ret = 0; //记录变化次数while(q.size()){ret++; // 就是往外扩展了一层int sz = q.size();// 每次都要同时出队列while(sz--){string t = q.front();q.pop();// 变化过程for(int i = 0; i < 8; i++){string tmp = t; //每次只变化一个字符for(int j = 0; j < 4; j++){tmp[i] = change[j];// 在基因库中并且没有被搜索过if(hash.count(tmp) && !vis.count(tmp)){// 判断是否已经结束if(tmp == endGene) return ret;q.push(tmp);vis.insert(tmp);}}}}}return -1;}
};

127.单词接龙

在这里插入图片描述
在这里插入图片描述

算法原理:

这道题和第二题基本一模一样,都是把一个字符串变化成目标字符串,唯一不同的是本题统计的是整个过程中单词的个数,其实就是上一题的最小次数+1

细节/技巧问题:

参考前两题

代码实现:

class Solution 
{
public:int ladderLength(string beginWord, string endWord, vector<string>& wordList) {unordered_set<string> hash(wordList.begin(), wordList.end());unordered_set<string> vis; // 标记已经搜索过的//if(beginWord == endWord) return 1;if(!hash.count(endWord)) return 0;queue<string> q;q.push(beginWord);vis.insert(beginWord);int ret = 0;while(q.size()){ret++;int sz = q.size();while(sz--){string t = q.front();q.pop();for(int i = 0; i < 10; i++){string tmp = t;for(char ch = 'a'; ch <= 'z'; ch++){tmp[i] = ch; // 每次只修改一个字符// 存在列表中并且没有被访问过if(!vis.count(tmp) && hash.count(tmp)){if(tmp == endWord) return ret+1; q.push(tmp);vis.insert(tmp);}}}}}return 0;}
};

675.为高尔夫比赛砍树

在这里插入图片描述
在这里插入图片描述

算法原理:

这道题目确实很难
这道题可以抽象成若干个迷宫问题我们只要计算出从这一棵树到下一棵树的最少步数,再把所有的步数相加,就可以求出砍完所有树的最少步数所以这里要多次使用bfs算法,写成函数,它的作用是统计两棵树之间的最少步数
在这里插入图片描述

难点/细节/技巧问题:

(1) 树的坐标如何存储。使用vector容器
(2) 由于要按照高度从低到高开始砍,所以先要把树的高度排升序
(3) bfs的参数是传起点和终点

代码实现:

class Solution 
{int m, n;int dx[4] = {0,0,1,-1};int dy[4] = {1,-1,0,0};public:int cutOffTree(vector<vector<int>>& f) {m = f.size(), n = f[0].size();// 记录树的位置vector<pair<int, int>> trees;for(int i = 0; i < m; i++)for(int j = 0; j < n; j++)if(f[i][j] > 1) trees.push_back({i, j}); // 是树,才记录坐标// 从低到高开始砍sort(trees.begin(), trees.end(), [&](const pair<int, int>& p1,const pair<int, int>& p2){return f[p1.first][p1.second] < f[p2.first][p2.second];});int bx = 0, by = 0; // 起始位置int step = 0;for(auto& [a,b] : trees){// 使用bfs计算两树之间的最短路int ret = bfs(f, bx, by, a, b);if(ret == -1) return -1;step += ret;bx = a, by = b; // 更新下一个位置的坐标}return step;}bool vis[51][51];int bfs(vector<vector<int>>& f, int bx, int by, int ex, int ey){if(bx == ex && by == ey) return 0;memset(vis, 0, sizeof(vis)); // 每次计算都要把标记还原queue<pair<int ,int>> q;q.push({bx, by});vis[bx][by] = true;int ret = 0; // 记录每两颗树之间的最短步数while(q.size()){ret++;int sz = q.size();while(sz--){auto[a, b] = q.front();q.pop();for(int k = 0; k < 4; k++){int x = a+dx[k], y = b+dy[k];if(x >= 0 && x < m && y >= 0 && y < n && !vis[x][y] && f[x][y]){// 判断是否走到终点if(x == ex && y == ey) return ret;q.push({x, y});vis[x][y] = true;}}}}return -1;}
};

3. 算法总结

bfs算法是解决最短路问题的经典方法。我感觉解决最短路问题核心的关键是每一次出队列时都要把上一次入队列的数据全部出完(就要写for循环),而最短路程就是向外扩展的层数

http://www.15wanjia.com/news/6418.html

相关文章:

  • 重庆网站建设制作设计公司杭州搜索推广公司
  • 怎样做专业网站网店推广方法
  • 有什么可靠网站做建材代理的吗百度搜索排行榜风云榜
  • 苏州做网站的百度权重排名查询
  • 网站解析需要多久生效十大广告公司排名
  • 经营性网站备案要钱吗代理公司注册
  • 付网站建设费seo关键词是怎么优化的
  • 手机网站开发下载厦门seo公司
  • 网站app充值记账凭证怎么做网站开发是做什么的
  • 太仓做网站的 太仓外链在线生成
  • 那个网站做视频能挣钱网络营销有哪些形式
  • 房地产建设网站的意义百度竞价是seo还是sem
  • 纵横网站网上做广告宣传
  • 精品应用下载安装移动端关键词优化
  • 宝鸡网站建设公司电话百度关键词优化软件排名
  • 网站商城建设如何避免内部竞争seo排名查询工具
  • 企业网站建设需要哪些资料信息seo推广软件费用
  • wordpress登陆后台总是跳转首页百度seo如何快速排名
  • 阿里去可以做几个网站对网络营销的理解
  • 能和实体彩票店和做的彩票网站高清视频网络服务器
  • 制作网站公司定价中山排名推广
  • 网站制作什么做seo关键词优化软件
  • 小加工厂做网站烘焙甜点培训学校
  • 廊坊做网站的公司上海做seo的公司
  • 做网站建设有哪些公司好站长工具手机综合查询
  • 设计案例分享网站百度指数网址是多少
  • 做网站的是外包公司吗搜索引擎优化seo应用
  • 2019做网站图片用什么格式在线代理浏览网址
  • 旅游网站建设的意义北京十大最靠谱it培训机构
  • 网站建设与管理用什么软件有哪些内容西安百度推广代运营