网络营销专业就业方向seo研究中心vip课程
到家的最少跳跃次数【LC1654】
有一只跳蚤的家在数轴上的位置
x
处。请你帮助它从位置0
出发,到达它的家。跳蚤跳跃的规则如下:
- 它可以 往前 跳恰好
a
个位置(即往右跳)。- 它可以 往后 跳恰好
b
个位置(即往左跳)。- 它不能 连续 往后跳
2
次。- 它不能跳到任何
forbidden
数组中的位置。跳蚤可以往前跳 超过 它的家的位置,但是它 不能跳到负整数 的位置。
给你一个整数数组
forbidden
,其中forbidden[i]
是跳蚤不能跳到的位置,同时给你整数a
,b
和x
,请你返回跳蚤到家的最少跳跃次数。如果没有恰好到达x
的可行方案,请你返回-1
。
-
思路:最短路问题,BFS
-
**BFS:**寻找最少跳跃次数,所以可以使用最短路径Dijkstra 算法,通过BFS实现,队列元素需要存储当前跳跃次数以及当前位置;
-
**记录状态:**由于跳跃时连续向前次数不受限制,但是不能连续向后跳两次,因此跳跃时还需要记录前一跳跃的状态为向后还是向前;
- 如果前一状态为向前,那么本次可以向前也可以向后
- 如果前一状态为向后,那么本次只可以向前
-
判断是否可以访问:
- 首先判断最远右边界,由于向前跳跃次数不受限制,避免超时,需要寻找最远右边界【重点】
- 当前位置不在
forbidden
数组中 - 之前没有访问过该状态【位置+方向】
-
寻找最远右边界:
-
如果 a ≥ b a\ge b a≥b,那么最远右边界为 x + b x+b x+b,在大于 x + b x+b x+b的位置不可能到达 x x x。
-
如果 a < b a\lt b a<b,那么可以先向前跳再向后跳逐步接近目标位置 x x x,最远右边界为 m a x ( f + a + b , x ) max(f+a+b, x) max(f+a+b,x),其中 f f f为 m a x ( f o r b i d d e n ) max(forbidden) max(forbidden)证明略。
感性认知:对于任何一条路径,若它包含了超过 m a x ( f + a + b , x ) max(f+a+b, x) max(f+a+b,x)的点,总能通过变换找到所有点都在 m a x ( f + a + b , x ) max(f+a+b, x) max(f+a+b,x)内的路径,且这条路径与原路径跳跃次数相同,对于该问题,这两条路径是等价的,所以只需考虑 m a x ( f + a + b , x ) max(f+a+b,x) max(f+a+b,x)内的路径即可
-
-
-
实现
class Solution {public int minimumJumps(int[] forbidden, int a, int b, int x) {Set<Integer> vis = new HashSet<>();Deque<int[]> pq = new LinkedList<>();// 跳跃次数、当前位置、连续向后跳次数int max = 0; for (int f : forbidden){vis.add(f);max = Math.max(max, f);} if (a > b){max = x + b;}else{max = Math.max(max + a + b, x);}boolean[][] flag = new boolean[max + 1][2];// 向前 向后一次flag[0][0] = true;pq.addLast(new int[]{0, 0, 0});while (!pq.isEmpty()){int[] node = pq.pollFirst();if (node[1] == x) return node[0]; // 向前int forward = node[1] + a;if (forward <= max && !vis.contains(forward) && !flag[forward][0]){flag[forward][0] = true;pq.addLast(new int[]{node[0] + 1, forward, 0});}// 向后int backward = node[1] - b;if (node[2] != 1 && backward >= 0 && !vis.contains(backward) && !flag[backward][1]){flag[backward][1] = true;pq.addLast(new int[]{node[0] + 1, backward, 1});}}return -1;} }