当前位置: 首页 > news >正文

自己做投票的网站简述网络营销的概念

自己做投票的网站,简述网络营销的概念,新云网站模板,网站建设高清图数据倾斜:主要就是在处理MR任务的时候,某个reduce的数据处理量比另外一些的reduce的数据量要大得多,其他reduce几乎不处理,这样的现象就是数据倾斜。 官方解释:数据倾斜指的是在数据处理过程中,由于某些键…

数据倾斜:主要就是在处理MR任务的时候,某个reduce的数据处理量比另外一些的reduce的数据量要大得多,其他reduce几乎不处理,这样的现象就是数据倾斜。

官方解释:数据倾斜指的是在数据处理过程中,由于某些键的分布极度不均匀,导致某些节点处理的数据量显著多于其他节点。‌这种情况会引发性能瓶颈,阻碍任务的并行执行,增加作业的整体执行时间。在Hadoop的MapReduce作业中,数据倾斜尤为明显,因为它会导致某些Reduce任务处理的数据量远大于其他任务,从而造成集群整体处理效率低下的问题。

这里比如有一个文本数据,里面内容全是:hadoop, hadoop, hadoop,hadoop ....,假设有800万条数据,这样更容易显示数据倾斜的效果,里面都是同样的单词,默认的hash取余分区的方法,明显不太适合,所以我们要自定义分区,重写分区方法。以及设置多个reduce,这里我设置为3,主要就是对数据倾斜的key进行一个增加后缀的方法,以及在Map阶段就增加后缀,实现过程是将每个hadoop都进行增加后缀,刚开始会全部默认存放到第一个分区里(0分区),然后写到分区后,自定义分区方法SkewPartitioner就会对里面的数据进行分析,如果后缀是1就分到1区里面,一共就0、1、2三个分区,以此来解决数据倾斜的问题。

注意:在Job端进行自定义分区器的设置:job,setPartitionerClass(SkewPartitioner.class)

具体代码如下:

package com.shujia.mr;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class Demo05SkewDataMR {public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {String line = value.toString();// 将每一行数据按照逗号/空格进行切分for (String word : line.split("[,\\s]")) {// 使用context.write将数据发送到下游// 将每个单词变成 单词,1 形式// 对数据倾斜的Key加上随机后缀if ("hadoop".equals(word)) {// 随机生成 0 1 2int prefix = (int) (Math.random() * 3);context.write(new Text(word + "_" + prefix), new IntWritable(1));} else {context.write(new Text(word), new IntWritable(1));}}}}public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {// 统计每个单词的数量int cnt = 0;for (IntWritable value : values) {cnt = cnt + value.get();}context.write(key, new IntWritable(cnt));}}// Driver端:组装(调度)及配置任务// 可以通过args接收参数// 本任务接收两个参数:输入路径、输出路径public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Configuration conf = new Configuration();// 创建JobJob job = Job.getInstance(conf);// 配置任务job.setJobName("Demo05SkewDataMR");job.setJarByClass(Demo05SkewDataMR.class);// 设置自定义分区器job.setPartitionerClass(SkewPartitioner.class);// 手动设置Reduce的数量// 最终输出到HDFS的文件数量等于Reduce的数量job.setNumReduceTasks(3);// 配置Map端job.setMapperClass(MyMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 配置Reduce端job.setReducerClass(MyReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);// 验证args的长度if (args.length != 2) {System.out.println("请传入输入输出目录!");return;}String input = args[0];String output = args[1];// 配置输入输出的路径FileInputFormat.addInputPath(job, new Path(input));Path ouputPath = new Path(output);// 通过FileSystem来实现覆盖写入FileSystem fs = FileSystem.get(conf);if (fs.exists(ouputPath)) {fs.delete(ouputPath, true);}// 该目录不能存在,会自动创建,如果已存在则会直接报错FileOutputFormat.setOutputPath(job, ouputPath);// 启动任务// 等待任务的完成job.waitForCompletion(true);}
}// 自定义分区:在Map阶段给key加上随机后缀,基于后缀返回不同的分区编号
class SkewPartitioner extends Partitioner<Text, IntWritable> {@Overridepublic int getPartition(Text text, IntWritable intWritable, int numPartitions) {String key = text.toString();int partitions = 0;// 只对数据倾斜的key做特殊处理if ("hadoop".equals(key.split("_")[0])) {switch (key) {
//                case "hadoop_0":
//                    partitions = 0;
//                    break;case "hadoop_1":partitions = 1;break;case "hadoop_2":partitions = 2;break;}} else {// 正常的key还是按照默认的Hash取余进行分区partitions = (key.hashCode() & Integer.MAX_VALUE) % numPartitions;}return partitions;}
}

http://www.15wanjia.com/news/611.html

相关文章:

  • 做百度推广会送网站吗社交媒体营销
  • 六安网站建设网络服务拼多多代运营收费标准
  • 深圳 网站建设培训班优化百度seo
  • 用ps做的网站样图怎么切100种宣传方式
  • 做企业网站大约多少钱中国十大软件外包公司排名
  • 网站建设 海口热点时事新闻
  • wordpress批量给图片加水印网店seo
  • 博彩网站合作建设seo要点
  • notepad做网站企业网站制作流程
  • 广州建站哪个济南兴田德润实惠吗小广告清理
  • 国外有哪些优秀的网站软文代写自助发稿平台
  • 怎么自己编程做网站百度网络科技有限公司
  • 做门户网站代码质量方面具体需要注意什么临安网站seo
  • 网站建设 外文文献新闻报道最新消息今天
  • 网站建设阶段推广策略市场推广计划怎么写
  • 网站聚合页疫情最新消息
  • 常州做网站哪家好优化神马网站关键词排名价格
  • 人工智能绘画深圳百度推广优化
  • 央美老师做的家具网站淮安网站seo
  • 巩义网站推广优化app推广工作是做什么的
  • 苏州吴江建设局招投标网站子域名网址查询
  • 网站扁平结构兰州网络优化seo
  • 某景区网站建设策划书什么是全网营销推广
  • 做的网站很卡是什么原因佛山网站建设十年乐云seo
  • 网站背景视频是怎么做的网站优化排名软件哪些最好
  • 手机端网站模板手机网络优化软件
  • 网站制作郑州网站制作百度投流运营
  • 章丘网站开发培训杭州云优化信息技术有限公司
  • 兴县做网站的公司网络营销优化
  • 做网站seo赚钱吗什么是seo优化