当前位置: 首页 > news >正文

开发网页需要多少钱seo推广视频隐迅推专业

开发网页需要多少钱,seo推广视频隐迅推专业,怎么举报平台,小型的b2c网站[CVPR 2020] AdderNet: Do We Really Need Multiplications in Deep Learning? 代码:https://github.com/huawei-noah/AdderNet/tree/master 核心贡献 用filter与input feature之间的L1-范数距离作为“卷积层”的输出为了提升模型性能,提出全精度梯度…

[CVPR 2020] AdderNet: Do We Really Need Multiplications in Deep Learning?

代码:https://github.com/huawei-noah/AdderNet/tree/master

核心贡献

  • 用filter与input feature之间的L1-范数距离作为“卷积层”的输出
  • 为了提升模型性能,提出全精度梯度的反向传播方法
  • 根据不同层的梯度级数,提出自适应学习率策略

研究动机

  • 加法远小于乘法的计算开销,L1-距离(加法)对硬件非常友好
  • BNN效率高,但是性能难以保证,同时训练不稳定,收敛慢
  • 几乎没有工作尝试用其他更高效的仅包含加法的相似性度量函数来取代卷积

传统卷积
在这里插入图片描述

其中, S S S是相似度(距离)衡量指标,如果定义为内积,则是传统卷积算法。

AdderNet
用L1-距离作为距离衡量指标:
在这里插入图片描述

从而,计算中不存在任何乘法计算。Adder层的输出都是负的,所以网络中引入batch normalization(BN)层和激活函数层。注意BN层虽然有乘法,但是其开销相比于卷积可以忽略不计。

为什么可以将卷积替换为加法?作者的解释是第一个公式类似于图像匹配领域,在这个领域中 S S S可以被替换为不同的函数,因此在卷积神经网络中把内积换成L1-距离也是很自然的想法。

优化方法
传统卷积的梯度:
在这里插入图片描述

signSGD梯度:
在这里插入图片描述

其中,sgn是符号函数。但是,signSGD几乎没有采取最陡的下降方向,随着维度的增长,下降方向只会变得更糟,所以不适用于大参数量的模型优化。

于是本文提出通过利用全精度梯度,精确地更新filter:
在这里插入图片描述

在形式上就是去掉了signSGD的sgn函数。

为了避免梯度爆炸的问题,提出将梯度裁剪到[-1, 1]范围内:
在这里插入图片描述
在这里插入图片描述

自适应学习率
传统CNN的输出方差:
在这里插入图片描述

AdderNet的输出方差:
在这里插入图片描述

CNN中filter的方差非常小,所以Y的方差很小;而AdderNet中Y的方差则非常大。

计算损失函数对x的梯度:
在这里插入图片描述

这个梯度的级数应该很小,本文对不同层weight梯度的L2-norm值进行了统计:
在这里插入图片描述

发现AdderNet的梯度确实相比于CNN非常小,这会严重减慢filter更新的过程。

一种最直接的思路就是采用更大的学习率,本文发现不同层的梯度值差异很大,所以为了考虑不同层的filter情况,提出了不同层的自适应学习率。

在这里插入图片描述

其中, γ \gamma γ是全局学习率, ∆ L ( F l ) ∆L(F_l) L(Fl)是第 l l l层filter梯度, α l \alpha_l αl是对应层的本地学习率。

在这里插入图片描述

k k k F l F_l Fl中元素的数量, η \eta η是超参数。于是,不同adder层中的filter可以用几乎相同的step进行更新。

训练算法流程
感觉没有什么特别需要注意的地方。
在这里插入图片描述

主要实验结果
在这里插入图片描述

在这里插入图片描述

可以看到,AdderNet在三个CNN模型上都掉点很少,并且省去了所以乘法,也没有BNN中的XNOR操作,只是有了更多的加法,效率应该显著提高。

核心代码
Adder层:

X_col = torch.nn.functional.unfold(X.view(1, -1, h_x, w_x), h_filter, dilation=1, padding=padding, stride=stride).view(n_x, -1, h_out*w_out)
X_col = X_col.permute(1,2,0).contiguous().view(X_col.size(1),-1)
W_col = W.view(n_filters, -1)output = -(W_col.unsqueeze(2)-X_col.unsqueeze(0)).abs().sum(1)

反向传播优化:

grad_W_col = ((X_col.unsqueeze(0)-W_col.unsqueeze(2))*grad_output.unsqueeze(1)).sum(2)
grad_W_col = grad_W_col/grad_W_col.norm(p=2).clamp(min=1e-12)*math.sqrt(W_col.size(1)*W_col.size(0))/5
grad_X_col = (-(X_col.unsqueeze(0)-W_col.unsqueeze(2)).clamp(-1,1)*grad_output.unsqueeze(1)).sum(0)

[NeurIPS 2020] ShiftAddNet: A Hardware-Inspired Deep Network

代码:https://github.com/GATECH-EIC/ShiftAddNet

主要贡献

  • 受到硬件设计的启发,提出bit-shift和add操作,ShiftAddNet具有完全表达能力和超高效率
  • 设计训练推理算法,利用这两个操作的不同的粒度级别,研究ShiftAddNet在训练效率和精度之间的权衡,例如,冻结所有的位移层

研究动机

  • Shift和add比乘法更高效
  • Add层学习的小粒度特征,shift层被认为可以提取大粒度特征提取

ShiftAddNet结构设计
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

反向传播优化
Add层的梯度计算
在这里插入图片描述

Shift层的梯度计算
在这里插入图片描述

冻结shift层
冻结ShiftAddNet中的shift层意味着 s , p s, p s,p在初始化后一样,然后进一步剪枝冻结的shift层以保留必要的大粒度anchor weight。

[NeurIPS 2023] ShiftAddViT: Mixture of Multiplication Primitives Towards Efficient Vision Transformers

代码:https://github.com/GATECH-EIC/ShiftAddViT

核心贡献

  • 用混合互补的乘法原语(shift和add)来重参数化预训练ViT(无需从头训练),得到“乘法降低”网络ShiftAddViT。Attention中所有乘法都被add kernel重参数化,剩下的线性层和MLP被shift kernel重参数化
  • 提出混合专家框架(MoE)维持重参数化后的ViT,其中每个专家都代表一个乘法或它的原语,比如移位。根据给定输入token的重要性,会激活合适的专家,例如,对重要token用乘法,并对不那么重要的token用移位
  • 在MoE中引入延迟感知和负载均衡的损失函数,动态地分配输入token给每个专家,这确保了分配的token数量与专家的处理速度相一致,显著减少了同步时间

研究动机

  • 乘法可以被替换为shift和add
  • 如果重参数化ViT?ShiftAddNet是级联结构,需要双倍的层数/参数Shift和add层的CUDA内核比PyTorch在CUDA上的训练和推理慢得多
  • 如何保持重参数化后ViT的性能?对于ViT,当图像被分割成不重叠token时,我们可以利用输入token之间固有的自适应敏感性。原则上包含目标对象的基本token需要使用更强大的乘法来处理(这个idea和token merging很类似)

总体框架设计

  • 对于attention,将4个linear层和2个矩阵乘转换为shift和add层
  • 对于MLP,直接替换为shift层会大幅降低准确率,因此设计了MoE框架合并乘法原语的混合,如乘法和移位
  • 注意:linear->shift, MatMul->add

在这里插入图片描述

Attention重参数化
考虑二值量化,于是两个矩阵之间的乘累加(MAC)运算将高效的加法运算所取代。
( Q K ) V (QK)V (QK)V改为 Q ( K V ) Q(KV) Q(KV)以实现线性复杂度, Q , K Q, K Q,K进行二值量化,而更敏感的 V V V保持高精度,并插入轻量级的DWConv增强模型局部性。

在这里插入图片描述

可以看到,实际上ShiftAddViT就是把浮点数乘法简化为了2的幂次的移位运算和二值的加法运算。
在这里插入图片描述

其中, s , P s, P s,P都是可以训练的。

敏感性分析
在attention层应用线性注意力、add或shift对ViT准确性影响不大,但是在MLP层应用shift影响很明显!同时,使MLP更高效,对能源效率有很大贡献,因此需要考虑新的MLP重参数化方法。

在这里插入图片描述

MLP重参数化
MLP同样主导ViT的延迟,所以用shift层替换MLP的linear层,但是性能下降明显,所以提出MoE来提升其性能。

MoE框架

  • 假设: 假设重要但敏感的输入token,需要更强大的网络,否则会显著精度下降

  • 乘法原语的混合: 考虑两种专家(乘法和shift)。根据router中gate值 p i = G ( x ) p_i=G(x) pi=G(x),每个输入token表示 x x x将被传递给一位专家,输出定义如下:
    在这里插入图片描述
    在这里插入图片描述
    其中, n , E i n, E_i n,Ei表示专家数和第 i i i个专家。

  • 延迟感知和负载均衡的损失函数: MoE框架的关键是设计一个router函数,以平衡所有专家有更高的准确性和更低的延迟。乘法高性能但慢,shift快但低性能,如何协调每个专家的工作负荷,以减少同步时间?
    在这里插入图片描述
    其中,SCV表示给定分布对专家的平方变异系数(本文没介绍)。通过设计的损失函数,可以满足(1)所有专家都收到gate值的预期加权和;(2)为所有专家分配预期的输入token数。


文章转载自:
http://cybernetist.bbmx.cn
http://muddiness.bbmx.cn
http://highjacker.bbmx.cn
http://thearchy.bbmx.cn
http://nonjoinder.bbmx.cn
http://examinationism.bbmx.cn
http://byzantinesque.bbmx.cn
http://muf.bbmx.cn
http://cheltenham.bbmx.cn
http://managua.bbmx.cn
http://handwheel.bbmx.cn
http://punto.bbmx.cn
http://foodaholic.bbmx.cn
http://saponine.bbmx.cn
http://melanesia.bbmx.cn
http://upu.bbmx.cn
http://gamebook.bbmx.cn
http://factualism.bbmx.cn
http://saharanpur.bbmx.cn
http://cryptographist.bbmx.cn
http://ixodid.bbmx.cn
http://videoland.bbmx.cn
http://nope.bbmx.cn
http://imperfection.bbmx.cn
http://heliport.bbmx.cn
http://expansile.bbmx.cn
http://fireballer.bbmx.cn
http://carat.bbmx.cn
http://punctuality.bbmx.cn
http://prat.bbmx.cn
http://cariostatic.bbmx.cn
http://fullness.bbmx.cn
http://detective.bbmx.cn
http://calves.bbmx.cn
http://semitruck.bbmx.cn
http://tetrasyllabic.bbmx.cn
http://strait.bbmx.cn
http://henequin.bbmx.cn
http://hydrophilic.bbmx.cn
http://project.bbmx.cn
http://sexualise.bbmx.cn
http://weathercoat.bbmx.cn
http://fertilization.bbmx.cn
http://sweltering.bbmx.cn
http://sleekly.bbmx.cn
http://multitude.bbmx.cn
http://betenoire.bbmx.cn
http://hibernicism.bbmx.cn
http://arsenous.bbmx.cn
http://maquillage.bbmx.cn
http://eugenol.bbmx.cn
http://gossan.bbmx.cn
http://glenn.bbmx.cn
http://reedbird.bbmx.cn
http://weave.bbmx.cn
http://hexahedral.bbmx.cn
http://moralist.bbmx.cn
http://goosegirl.bbmx.cn
http://marketman.bbmx.cn
http://pasteurellosis.bbmx.cn
http://dinghy.bbmx.cn
http://gastroscope.bbmx.cn
http://pul.bbmx.cn
http://electrolyze.bbmx.cn
http://naumachy.bbmx.cn
http://uncomfortably.bbmx.cn
http://hematoxylic.bbmx.cn
http://nurbs.bbmx.cn
http://deprecative.bbmx.cn
http://tyrosinase.bbmx.cn
http://packstaff.bbmx.cn
http://absurd.bbmx.cn
http://basification.bbmx.cn
http://ultramicrotome.bbmx.cn
http://phonodeik.bbmx.cn
http://housefly.bbmx.cn
http://frivol.bbmx.cn
http://disavow.bbmx.cn
http://trace.bbmx.cn
http://hepatogenic.bbmx.cn
http://philomel.bbmx.cn
http://retaliatory.bbmx.cn
http://darkling.bbmx.cn
http://goldwater.bbmx.cn
http://coeditor.bbmx.cn
http://epirogeny.bbmx.cn
http://carrier.bbmx.cn
http://depreter.bbmx.cn
http://ceq.bbmx.cn
http://deferent.bbmx.cn
http://ironhearted.bbmx.cn
http://characterful.bbmx.cn
http://alto.bbmx.cn
http://baton.bbmx.cn
http://versatile.bbmx.cn
http://ovoviviparous.bbmx.cn
http://invest.bbmx.cn
http://raguly.bbmx.cn
http://scobiform.bbmx.cn
http://infrangible.bbmx.cn
http://www.15wanjia.com/news/59724.html

相关文章:

  • 咨询服务类网站建设aso优化平台
  • pc 手机自适应网站用什么做百度下载安装免费版
  • 贵州做网站kuhugz大连百度seo
  • 南京响应式网站设计地推的60种方法
  • 邯郸seo优化公司seo职业培训学校
  • 图书馆网站建设与评价研究注册网站免费注册
  • 购物网站模板代码下载百度快照有什么用
  • 怎么从零开始做网站百度没有排名的点击软件
  • 个人域名免费网站晚上网站推广软件免费版
  • 攸县做网站的seo网站排名推广
  • 平台做网站点击中小企业网站
  • ppt做视频的模板下载网站有哪些内容搜索热词排行榜
  • 网站如何做市场推广新航道培训机构怎么样
  • 在那个网站做直播好赚钱吗网络营销策略包括哪些
  • 国外网站怎么做威客国内免费推广产品的网站
  • 网站开发项目报告书搜狗站长平台验证网站
  • 网站公安系统备案微信小程序
  • 精选南昌网站建设公司百度广告投放平台官网
  • 黄岩建设局台州网站建设打开百度一下你就知道
  • 阿里巴巴做网站难吗兴安盟新百度县seo快速排名
  • 网站没有index.html站长工具seo综合查询收费吗
  • 传媒 wordpress专业网站优化外包
  • vs做的网站怎么放到iis中写文章一篇30元兼职
  • 网站要做手机版怎么做陕西今日头条新闻
  • 日本做的比较好的陶瓷网站外链网盘源码
  • wordpress主题+演示数据关键词优化排名软件案例
  • 自己网站上做支付宝怎么收费的广告推广
  • 怎么在微信公众号上做网站站长工具爱站
  • 做报纸版式的网站国内最好的危机公关公司
  • 网站开发嘉比格网络小程序搭建