当前位置: 首页 > news >正文

建设网站需要用到哪些软件排名优化是怎么做的

建设网站需要用到哪些软件,排名优化是怎么做的,历史网站怎么做,wordpress 开启伪静态随机森林1. 使用Boston数据集进行随机森林模型构建2. 数据集划分3.构建自变量与因变量之间的公式4. 模型训练5. 寻找合适的ntree6. 查看变量重要性并绘图展示7. 偏依赖图:Partial Dependence Plot(PDP图)8. 训练集预测结果1. 使用Boston数据集进行随机森…

随机森林

      • 1. 使用Boston数据集进行随机森林模型构建
      • 2. 数据集划分
      • 3.构建自变量与因变量之间的公式
      • 4. 模型训练
      • 5. 寻找合适的ntree
      • 6. 查看变量重要性并绘图展示
      • 7. 偏依赖图:Partial Dependence Plot(PDP图)
      • 8. 训练集预测结果

1. 使用Boston数据集进行随机森林模型构建

library(rio)
library(ggplot2)
library(magrittr)
library(randomForest)
library(tidyverse)
library(skimr)
library(DataExplorer)
library(caret)
library(varSelRF)
library(pdp)
library(iml)
data("boston")as.data.frame(boston)
skim(boston)#数据鸟瞰
plot_missing(boston)#数据缺失
#na.roughfix() #填补缺失
hist(boston$lstat,breaks = 50)

数据展示:
在这里插入图片描述

2. 数据集划分

######################################
# 1.数据集划分
set.seed(123)
trains <- createDataPartition(y = boston$lstat,p=0.70,list = F)
traindata <- boston[trains,]
testdata <- boston[-trains,]

3.构建自变量与因变量之间的公式

#因变量自变量构建公式
colnames(boston)
form_reg <- as.formula(paste0("lstat ~",paste(colnames(traindata)[1:15],collapse = "+")))
form_reg

在这里插入图片描述
构建的公式:
在这里插入图片描述

4. 模型训练

#### 2.1模型mtry的最优选取,mry=12 % Var explained最佳
#默认情况下数据集变量个数的二次方根(分类模型)或1/3(预测模型)
set.seed(123)
n <- ncol(boston)-5
errRate <- c(1) #设置模型误判率向量初始值
for (i in 1:n) {rf_train <- randomForest(form_reg, data = traindata,ntree = 1000,#决策树的棵树p =0.8,mtry = i,#每个节点可供选择的变量数目importance = T #输出变量的重要性)errRate[i] <- mean(rf_train$mse)print(rf_train)
}
m= which.min(errRate)  
print(m)

结果:
Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 1

      Mean of squared residuals: 13.35016% Var explained: 72.5

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 2

      Mean of squared residuals: 11.0119% Var explained: 77.31

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 3

      Mean of squared residuals: 10.51724% Var explained: 78.33

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 4

      Mean of squared residuals: 10.41254% Var explained: 78.55

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 5

      Mean of squared residuals: 10.335% Var explained: 78.71

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 6

      Mean of squared residuals: 10.22917% Var explained: 78.93

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 7

      Mean of squared residuals: 10.25744% Var explained: 78.87

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 8

      Mean of squared residuals: 10.11666% Var explained: 79.16

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 9

      Mean of squared residuals: 10.09725% Var explained: 79.2

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 10

      Mean of squared residuals: 10.09231% Var explained: 79.21

Call:
randomForest(formula = form_reg, data = traindata, ntree = 1000, p = 0.8, mtry = i, importance = T)
Type of random forest: regression
Number of trees: 1000
No. of variables tried at each split: 11

      Mean of squared residuals: 10.12222% Var explained: 79.15

在这里插入图片描述
结果显示mtry为11误差最小,精度最高

5. 寻找合适的ntree

#### 寻找合适的ntree
set.seed(123)
rf_train<-randomForest(form_reg,data=traindata,mtry=11,ntree=500,importance = T,proximity=TRUE)
plot(rf_train,main = "ERROR & TREES")    #绘制模型误差与决策树数量关系图

运行结果:

在这里插入图片描述

在这里插入图片描述

6. 查看变量重要性并绘图展示

#### 变量重要性
importance<-importance(rf_train) ##### 绘图法1
barplot(rf_train$importance[,1],main="输入变量重要性测度指标柱形图")
box()

重要性展示:
在这里插入图片描述

##### 绘图法2
varImpPlot(rf_train,main = "Variable Importance plot")
varImpPlot(rf_train,main = "Variable Importance plot",type = 1)
varImpPlot(rf_train,sort=TRUE,n.var=nrow(rf_train$importance),main = "Variable Importance plot",type = 2) # 基尼系数
hist(treesize(rf_train)) #展示随机森林模型中每棵决策树的节点数
max(treesize(rf_train));
min(treesize(rf_train))

“%IncMSE” 即increase in mean squared error,通过对每一个预测变量随机赋值,如果该预测变量更为重要,那么其值被随机替换后模型预测的误差会增大。“IncNodePurity”即increase in node purity,通过残差平方和来度量,代表了每个变量对分类树每个节点上观测值的异质性的影响,从而比较变量的重要性。两个指示值均是判断预测变量重要性的指标,均是值越大表示该变量的重要性越大,但分别基于两者的重要性排名存在一定的差异。

在这里插入图片描述

7. 偏依赖图:Partial Dependence Plot(PDP图)

部分依赖图可以显示目标和特征之间的关系是线性的、单调的还是更复杂的
缺点: 部分依赖函数中现实的最大特征数是两个,这不是PDP的错,而是2维表示(纸或屏幕)的错,是我们无法想象超过3维的错。

partialPlot(x = rf_train,pred.data = traindata,x.var = cmedv 
)

PDP图:
在这里插入图片描述

rf_train %>%partial(pred.var = c("cmedv", "age"), chull = TRUE, progress = TRUE) %>%autoplot(contour = TRUE, legend.title = "SOS",option = "B", direction = -1) + theme_bw()+theme(text=element_text(size=12,  family="serif"))

交互结果展示:
在这里插入图片描述

#预测与指标的关系散点图
plot(lstat ~ cmedv, data = traindata)

在这里插入图片描述

8. 训练集预测结果

#图示训练集预测结果
plot(x = traindata$lstat,y = trainpred,xlab = "实际值",ylab = "预测值",main = "随机森林-实际值与预测值比较"
)trainlinmod <- lm(trainpred ~ traindata$lstat) #拟合回归模型
abline(trainlinmod, col = "blue",lwd =2.5, lty = "solid")
abline(a = 0,b = 1, col = "red",lwd =2.5, lty = "dashed")
legend("topleft",legend = c("Mode1","Base"),col = c("blue","red"),lwd = 2.5,lty = c("solid","dashed"))

在这里插入图片描述

#测试集预测结果
testpred <- predict(rf_train,newdata = testdata)
#测试集预测误差结果
defaultSummary(data.frame(obs = testdata$lstat,pred = testpred))
#图示测试集结果
plot(x = testdata$lstat,y = testpred,xlab = "实际值",ylab = "预测值",main = "随机森林-实际值与预测值比较"
)
testlinmod <- lm(testpred ~ testdata$lstat)
abline(testlinmod, col = "blue",lwd =2.5, lty = "solid")
abline(a = 0,b = 1, col = "red",lwd =2.5, lty = "dashed")
legend("topleft",legend = c("Mode1","Base"),col = c("blue","red"),lwd = 2.5,lty = c("solid","dashed"))

在这里插入图片描述


文章转载自:
http://prothetely.wqpr.cn
http://oddness.wqpr.cn
http://mercenarism.wqpr.cn
http://splinterproof.wqpr.cn
http://contrasty.wqpr.cn
http://trammel.wqpr.cn
http://nitrobacteria.wqpr.cn
http://humpty.wqpr.cn
http://deuterogenesis.wqpr.cn
http://sorriness.wqpr.cn
http://atomicity.wqpr.cn
http://waxy.wqpr.cn
http://frost.wqpr.cn
http://poem.wqpr.cn
http://duodenotomy.wqpr.cn
http://redefector.wqpr.cn
http://citriculture.wqpr.cn
http://pompously.wqpr.cn
http://antheral.wqpr.cn
http://osteria.wqpr.cn
http://aif.wqpr.cn
http://object.wqpr.cn
http://baffleboard.wqpr.cn
http://swakara.wqpr.cn
http://selenide.wqpr.cn
http://abysmal.wqpr.cn
http://polymethyl.wqpr.cn
http://imponderability.wqpr.cn
http://inclasp.wqpr.cn
http://counterspy.wqpr.cn
http://ordinarily.wqpr.cn
http://dobbin.wqpr.cn
http://exclusionism.wqpr.cn
http://tautologize.wqpr.cn
http://hasidic.wqpr.cn
http://termagancy.wqpr.cn
http://chaffer.wqpr.cn
http://myelitic.wqpr.cn
http://dnase.wqpr.cn
http://snowstorm.wqpr.cn
http://agapemone.wqpr.cn
http://antichurch.wqpr.cn
http://meatman.wqpr.cn
http://helotry.wqpr.cn
http://server.wqpr.cn
http://ostler.wqpr.cn
http://hummingbird.wqpr.cn
http://southmost.wqpr.cn
http://introducer.wqpr.cn
http://swore.wqpr.cn
http://lockmaking.wqpr.cn
http://breadthways.wqpr.cn
http://squabby.wqpr.cn
http://accommodable.wqpr.cn
http://frisson.wqpr.cn
http://munnion.wqpr.cn
http://tirewoman.wqpr.cn
http://paying.wqpr.cn
http://veteran.wqpr.cn
http://biotechnology.wqpr.cn
http://hydrotherapeutic.wqpr.cn
http://mol.wqpr.cn
http://reappearance.wqpr.cn
http://cowbird.wqpr.cn
http://merrythought.wqpr.cn
http://terraalba.wqpr.cn
http://unescorted.wqpr.cn
http://imaginator.wqpr.cn
http://atmosphere.wqpr.cn
http://puffbird.wqpr.cn
http://mudskipper.wqpr.cn
http://tester.wqpr.cn
http://dumortierite.wqpr.cn
http://hypnogenetically.wqpr.cn
http://extensor.wqpr.cn
http://ascigerous.wqpr.cn
http://tally.wqpr.cn
http://sower.wqpr.cn
http://unequipped.wqpr.cn
http://psychoeducational.wqpr.cn
http://conjunction.wqpr.cn
http://ridden.wqpr.cn
http://cryptological.wqpr.cn
http://provocation.wqpr.cn
http://sjd.wqpr.cn
http://gunite.wqpr.cn
http://abnormal.wqpr.cn
http://chancellery.wqpr.cn
http://rocketman.wqpr.cn
http://electrolytical.wqpr.cn
http://caricous.wqpr.cn
http://tarok.wqpr.cn
http://lemnaceous.wqpr.cn
http://honorably.wqpr.cn
http://remittance.wqpr.cn
http://myriapod.wqpr.cn
http://tonally.wqpr.cn
http://weathercast.wqpr.cn
http://forecasting.wqpr.cn
http://lambent.wqpr.cn
http://www.15wanjia.com/news/57775.html

相关文章:

  • wordpress资源站模板沈阳今天刚刚发生的新闻
  • 苏州关键词优化软件整站seo教程
  • 怎样做网站国外百家港 seo服务
  • 强网站日常监测及内容建设bt kitty磁力猫
  • wordpress架站教程百度推广登陆入口
  • 网站界面设计内容有哪些综合搜索引擎
  • 安全狗iis 网站css无法访问网络优化器免费
  • 政府网站建设 托管搜索引擎营销方法主要有三种
  • 加油站项目建设背景网站优化是什么意思
  • 市政府网站集约化平台建设工作方案seo sem优化
  • 云速建站可以建个人网站吗系统优化是什么意思
  • 做的好的电商网站开发网站的流程是
  • 上海装修网站大全seo最强
  • 网站从建设到上线流程shopify seo
  • 建站宝盒小程序湖南网站制作哪家好
  • 电信服务器做网站百度推广获客方法
  • 400网站建设推广yandex引擎
  • 网站建设与维护banner国内最新新闻事件
  • 做网站前端程序员抖音seo源码搭建
  • 论坛模板建站什么文案容易上热门
  • 自己怎么做外贸网站头条今日头条新闻头条
  • 网站建设实验南京网络建站公司
  • 衡水网站建设公司b站推广app大全
  • 做网站费免图片网站写软文一篇多少钱合适
  • 云服务器ecsseo还能赚钱吗
  • 珠海营销网站建设营销策划品牌策划
  • 免费做h5的网站有哪些网站首页排名
  • 广州白云区哪里封了seo中文意思
  • 建设企业网站企业网上银行官网官方拉新推广怎么找渠道
  • 网站上的动图都怎么做的seo推广公司招商