当前位置: 首页 > news >正文

南昌做网站开发的公司哪家好东莞免费建站公司

南昌做网站开发的公司哪家好,东莞免费建站公司,成都视频剪辑培训,江苏模板网站建设在《使用numpy处理图片——基础操作》一文中,我们介绍了如何使用numpy修改图片的透明度。本文我们将介绍镜像翻转和旋转。 镜像翻转 上下翻转 from PIL import Image import numpy as np img Image.open(example.png) data np.array(img)# axis0 is vertical, a…

在《使用numpy处理图片——基础操作》一文中,我们介绍了如何使用numpy修改图片的透明度。本文我们将介绍镜像翻转和旋转。

镜像翻转

上下翻转

在这里插入图片描述

from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)# axis=0 is vertical, axis=1 is horizontal
verticalData = np.flip(data, axis=0)
verticalImg = Image.fromarray(verticalData)
verticalImg.save('vertical.png')

请添加图片描述

左右翻转

在这里插入图片描述

from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)# axis=0 is vertical, axis=1 is horizontal
horizontalData = np.flip(data, axis=1)
horizontalImg = Image.fromarray(horizontalData)
horizontalImg.save('horizontal.png')

请添加图片描述

旋转

上面的翻转,又可以称之为镜像翻转。因为得到的图片,只有通过镜子去查看,才是正常的字。

在这里插入图片描述
而一般情况下,我们需要的是旋转,即得到的文字还是可以正确识别的。
在这里插入图片描述

向左旋转90度

向左旋转90需要通过两个步骤完成:

  1. 转置
  2. 上下镜像翻转
    在这里插入图片描述
def flip_left_90(arr):return np.flip(arr.transpose((1,0,2)), axis=0)

需要解释下transpose传递元组的意思

If specified, it must be a tuple or list which contains a permutation of [0,1,…,N-1] where N is the number of axes of a. The i’th axis of the returned array will correspond to the axis numbered axes[i] of the input. If not specified, defaults to range(a.ndim)[::-1], which reverses the order of the axes.

这句话的意思是,传递的元组要包含该数组所有的维度的值。转换的方法就是对应项相互转置。比如数组最开始时的维度表示是(0,1,2),如果给transpose传递了(1,0,2)。就意味着0维度和1维度转置,2维度保持不变。这个对我们处理图片特别重要,因为2维度保存的是RGBA信息。这个信息不能转置,否则就会导致颜色错乱。
请添加图片描述

旋转180度

旋转180度有两种方法:

  1. 两次90度左转。
  2. 上下镜像翻转后左右镜像翻转。(顺序无所谓)

在这里插入图片描述

def flip_180_with_flip_left_90(arr):return flip_left_90(flip_left_90(arr))

在这里插入图片描述

def flip_180_with_axis(arr):return np.flip(np.flip(arr, axis=1), axis=0)

请添加图片描述

向右旋转90度

向右旋转90度,也是向左旋转270度。可以拆解为:

  • 3次向左旋转
  • 1次180度旋转外加1次90度向左旋转
  • 1次90度向左旋转外加1次180度旋转
def flip_right_90_with_left_90(arr):return flip_left_90(flip_left_90(flip_left_90(arr)))def flip_right_90_with_axis_left_90(arr):return flip_left_90(flip_180_with_axis(arr))def flip_right_90_with_left_90_axis(arr):return flip_180_with_axis(flip_left_90(arr))

请添加图片描述

代码

from PIL import Image
import numpy as np
img = Image.open('example.png')
data = np.array(img)# axis=0 is vertical, axis=1 is horizontal
verticalData = np.flip(data, axis=0)
verticalImg = Image.fromarray(verticalData)
verticalImg.save('vertical.png')horizontalData = np.flip(data, axis=1)
horizontalImg = Image.fromarray(horizontalData)
horizontalImg.save('horizontal.png')def flip_180_with_flip_left_90(arr):return flip_left_90(flip_left_90(arr))def flip_180_with_axis(arr):return np.flip(np.flip(arr, axis=1), axis=0)def flip_left_90(arr):return np.flip(arr.transpose((1,0,2)), axis=0)def flip_right_90_with_left_90(arr):return flip_left_90(flip_left_90(flip_left_90(arr)))def flip_right_90_with_axis_left_90(arr):return flip_left_90(flip_180_with_axis(arr))def flip_right_90_with_left_90_axis(arr):return flip_180_with_axis(flip_left_90(arr))left90Data = flip_left_90(data)
left90Img = Image.fromarray(left90Data)
left90Img.save('flipleft90.png')right90DataFromLeft90 = flip_right_90_with_left_90(data)
right90ImgFromLeft90 = Image.fromarray(right90DataFromLeft90)
right90ImgFromLeft90.save('flipright90fromleft90.png')right90DataFromAxisLeft90 = flip_right_90_with_axis_left_90(data)
right90ImgFromAxisLeft90 = Image.fromarray(right90DataFromAxisLeft90)
right90ImgFromAxisLeft90.save('flipright90fromamxisleft90.png')right90DataFromLeft90Axis = flip_right_90_with_left_90_axis(data)
right90ImgFromLeft90Axis = Image.fromarray(right90DataFromLeft90Axis)
right90ImgFromLeft90Axis.save('flipright90fromleft90amxis.png')left180DataFromLeft90 = flip_180_with_flip_left_90(data)
left180ImgFromLeft90 = Image.fromarray(left180DataFromLeft90)
left180ImgFromLeft90.save('flip180fromleft90.png')left180DataFromAxis = flip_180_with_axis(data)
left180ImgFromAxis = Image.fromarray(left180DataFromAxis)
left180ImgFromAxis.save('flip180fromaxis.png')

参考资料

  • https://flat2010.github.io/2017/05/31/Numpy%E6%95%B0%E7%BB%84%E8%A7%A3%E6%83%91/
  • https://numpy.org/doc/stable/reference/generated/numpy.transpose.html
http://www.15wanjia.com/news/56544.html

相关文章:

  • 有一个域名做网站搜索引擎推广方式有哪些
  • 网站wordpress北京seo结算
  • 织梦做的网站后台软文写作营销
  • 建设网站的模板下载域名查询网址
  • 建设学校网站下载百度2024最新版
  • 上海网站建设极简慕枫微信朋友圈营销文案
  • wordpress没有通过上传测试杭州seo俱乐部
  • 有什么网站可以接单做兼职的社区营销推广活动方案
  • 赤水网站建设优化外包哪里好
  • 韩国男女做那个视频网站十大引擎网址
  • 西安的商城网站设计网络舆情监测系统
  • 自己做网站服务器网络营销推广的优势
  • 网站如何做关键字收录技能培训机构
  • 怎样做网站和网站的友情链接技能培训
  • 网站开发哪家公司比较好千部小黄油资源百度云
  • 香港公司做网站国外销售太原seo外包公司
  • 专业做网站联系方式百度推广登录账号首页
  • 鲁中网淄博市疫情西安seo代运营
  • 朝阳做网站google下载官方版
  • 怎样推广产品河南网站排名优化
  • 搭建写真网站赚钱项目百度指数使用指南
  • 商城网站做推广方案a站
  • 乌鲁木齐最新消息通知搜索优化的培训免费咨询
  • 如何找到app的开发者石家庄百度搜索引擎优化
  • 网站设计二级页面怎么做升华网络推广软件
  • 钓鱼网站到底怎么做广东vs北京首钢
  • 网站建设元play商店
  • 关键词做网站标题是什么意思东莞seo推广
  • 深圳市在建项目查询seo快速排名软件价格
  • wordpress 商品页规格西安网站建设方案优化