当前位置: 首页 > news >正文

大酒店网站源代码手机优化大师下载

大酒店网站源代码,手机优化大师下载,最新新闻事件今天国内视频,wordpress按作者归档CNN 网络适用于图片识别,卷积神经网络主要用于图片的处理识别。卷积神经网络,包括一下几部分,输入层、卷积层、池化层、全链接层和输出层。 使用 CIFAR-10 进行训练, CIFAR-10 中图片尺寸为 32 * 32。卷积层通过卷积核移动进行计…

CNN 网络适用于图片识别,卷积神经网络主要用于图片的处理识别。卷积神经网络,包括一下几部分,输入层、卷积层、池化层、全链接层和输出层。
在这里插入图片描述
使用 CIFAR-10 进行训练, CIFAR-10 中图片尺寸为 32 * 32。卷积层通过卷积核移动进行计算最终生成特征图。

在这里插入图片描述
通过池化层进行降维度
在这里插入图片描述

卷积网络结构从输入到输出, 3* 32*32 --> 10:

类型WeightBIAS
卷积(3, 12, 5)(12, 3, 5, 5)12
卷积(12, 12, 5)(12, 12, 5, 5)12
Norm1212
卷积(12, 24, 5)(24, 12, 5, 5)24
卷积(24 24, 5)(24, 24, 5, 5)24
Norm2424
Linear(10, 2400)10

训练分类模型

准备数据
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms
from torch.utils.data import DataLoader# Loading and normalizing the data.
# Define transformations for the training and test sets
transformations = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])# CIFAR10 dataset consists of 50K training images. We define the batch size of 10 to load 5,000 batches of images.
batch_size = 10
number_of_labels = 10 # Create an instance for training. 
# When we run this code for the first time, the CIFAR10 train dataset will be downloaded locally. 
train_set =CIFAR10(root="./data",train=True,transform=transformations,download=True)# Create a loader for the training set which will read the data within batch size and put into memory.
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0)
print("The number of images in a training set is: ", len(train_loader)*batch_size)# Create an instance for testing, note that train is set to False.
# When we run this code for the first time, the CIFAR10 test dataset will be downloaded locally. 
test_set = CIFAR10(root="./data", train=False, transform=transformations, download=True)# Create a loader for the test set which will read the data within batch size and put into memory. 
# Note that each shuffle is set to false for the test loader.
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0)
print("The number of images in a test set is: ", len(test_loader)*batch_size)print("The number of batches per epoch is: ", len(train_loader))
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
创建网络
import torch
import torch.nn as nn
import torchvision
import torch.nn.functional as F# Define a convolution neural network
class Network(nn.Module):def __init__(self):super(Network, self).__init__()self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=1)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=1)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=1)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=1)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*10*10, 10)def forward(self, input):output = F.relu(self.bn1(self.conv1(input)))      output = F.relu(self.bn2(self.conv2(output)))     output = self.pool(output)                        output = F.relu(self.bn4(self.conv4(output)))     output = F.relu(self.bn5(self.conv5(output)))     output = output.view(-1, 24*10*10)output = self.fc1(output)return output# Instantiate a neural network model 
model = Network()

定义损失函数

使用交叉熵函数作为损失函数,交叉熵分为两种

  • 二分类交叉熵函数
    在这里插入图片描述
  • 多分类交叉熵函数
    在这里插入图片描述
loss_fn = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=0.001, weight_decay=0.0001)
模型训练
from torch.autograd import Variable# Function to save the model
def saveModel():path = "./myFirstModel.pth"torch.save(model.state_dict(), path)# Function to test the model with the test dataset and print the accuracy for the test images
def testAccuracy():model.eval()accuracy = 0.0total = 0.0device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")with torch.no_grad():for data in test_loader:images, labels = data# run the model on the test set to predict labelsoutputs = model(images.to(device))# the label with the highest energy will be our prediction_, predicted = torch.max(outputs.data, 1)total += labels.size(0)accuracy += (predicted == labels.to(device)).sum().item()# compute the accuracy over all test imagesaccuracy = (100 * accuracy / total)return(accuracy)# Training function. We simply have to loop over our data iterator and feed the inputs to the network and optimize.
def train(num_epochs):best_accuracy = 0.0# Define your execution devicedevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print("The model will be running on", device, "device")# Convert model parameters and buffers to CPU or Cudamodel.to(device)for epoch in range(num_epochs):  # loop over the dataset multiple timesrunning_loss = 0.0running_acc = 0.0for i, (images, labels) in enumerate(train_loader, 0):# get the inputsimages = Variable(images.to(device))labels = Variable(labels.to(device))# zero the parameter gradientsoptimizer.zero_grad()# predict classes using images from the training setoutputs = model(images)# compute the loss based on model output and real labelsloss = loss_fn(outputs, labels)# backpropagate the lossloss.backward()# adjust parameters based on the calculated gradientsoptimizer.step()# Let's print statistics for every 1,000 imagesrunning_loss += loss.item()     # extract the loss valueif i % 1000 == 999:    # print every 1000 (twice per epoch) print('[%d, %5d] loss: %.3f' %(epoch + 1, i + 1, running_loss / 1000))# zero the lossrunning_loss = 0.0# Compute and print the average accuracy fo this epoch when tested over all 10000 test imagesaccuracy = testAccuracy()print('For epoch', epoch+1,'the test accuracy over the whole test set is %d %%' % (accuracy))# we want to save the model if the accuracy is the bestif accuracy > best_accuracy:saveModel()best_accuracy = accuracy
测试模型
import matplotlib.pyplot as plt
import numpy as np# Function to show the images
def imageshow(img):img = img / 2 + 0.5     # unnormalizenpimg = img.numpy()plt.imshow(np.transpose(npimg, (1, 2, 0)))plt.show()# Function to test the model with a batch of images and show the labels predictions
def testBatch():# get batch of images from the test DataLoader  images, labels = next(iter(test_loader))# show all images as one image gridimageshow(torchvision.utils.make_grid(images))# Show the real labels on the screen print('Real labels: ', ' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))# Let's see what if the model identifiers the  labels of those exampleoutputs = model(images)# We got the probability for every 10 labels. The highest (max) probability should be correct label_, predicted = torch.max(outputs, 1)# Let's show the predicted labels on the screen to compare with the real onesprint('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(batch_size)))
执行模型
if __name__ == "__main__":# Let's build our modeltrain(5)print('Finished Training')# Test which classes performed welltestAccuracy()# Let's load the model we just created and test the accuracy per labelmodel = Network()path = "myFirstModel.pth"model.load_state_dict(torch.load(path))# Test with batch of imagestestBatch()

在这里插入图片描述

总结

pytorch 搭建一个 CNN 模型比较简单,5 轮训练之后,效果就可以达到 60%,10 张图片中预测对了 6 张。

http://www.15wanjia.com/news/55124.html

相关文章:

  • 网站做302跳转的意义品牌整合营销推广
  • 国内十大景观设计公司泰州seo公司
  • 老闵行房价为什么不涨app搜索优化
  • 微商推广网站怎么做成功营销案例分享
  • 网上做网站怎么赚钱电商推广联盟
  • 菜鸟必读 网站被入侵后需做的检测 2如何建立独立网站
  • 做个平台网站怎么做2022最新版百度
  • 响应式电影资讯网站个人seo外包
  • 在什么网站做推广谷歌收录查询
  • 网站制作素材图片广告联盟点击赚钱平台
  • 柳城企业网站开发公司怎么去推广自己的店铺
  • 建设网站需要准备哪些内容投放广告
  • wordpress快速发布工具站内seo内容优化包括
  • 南通网站建设公司排名武汉百度seo网站优化
  • 网站建设和维护做什么专业的网页制作公司
  • 网站建设除了中企动力谷歌seo一个月费用需要2万吗
  • 农村学校资源网站建设与研究网络推广网站的方法
  • wordpress修改网站标题电商自学网
  • 企业网站建设的优缺点郑州抖音推广
  • 石桥铺网站建设公司年度关键词有哪些
  • 重庆做网站推广的志鸿优化网下载
  • 大连网站开发师seo优化软件免费
  • 企业免费建网站济南做网站比较好的公司
  • 系统开发的生命周期分为几个阶段seo三人行网站
  • cn网站怎么做seo搜索优化专员招聘
  • 天津商城网站设计公司常见的网络营销工具
  • 做网站在哪个地方买空间北京网站优化服务商
  • 软件商店下载安装免费西安seo站内优化
  • 没有网站做APP长沙seo顾问
  • 企业网站建设的核心是宁波网站关键词优化公司