当前位置: 首页 > news >正文

抖音代运营方案范文网站为什么要seo

抖音代运营方案范文,网站为什么要seo,公司注册新流程,长沙人才招聘网官网网址LangChain学习文档 【LangChain】向量存储(Vector stores)【LangChain】向量存储之FAISS 概要 Facebook AI 相似性搜索(Faiss)是一个用于高效相似性搜索和密集向量聚类的库。它包含的算法可以搜索任意大小的向量集,甚至可能无法容纳在 RAM 中…

LangChain学习文档

  • 【LangChain】向量存储(Vector stores)
  • 【LangChain】向量存储之FAISS

概要

Facebook AI 相似性搜索(Faiss)是一个用于高效相似性搜索和密集向量聚类的库。它包含的算法可以搜索任意大小的向量集,甚至可能无法容纳在 RAM 中的向量集。它还包含用于评估和参数调整的支持代码。

FAISS详细文档

本篇文章将展示如何使用与 FAISS 向量数据库相关的功能。

前提条件

pip install faiss-gpu # For CUDA 7.5+ Supported GPU's.
# OR
pip install faiss-cpu # For CPU Installation

内容

我们想要使用 OpenAIEmbeddings,因此我们必须获取 OpenAI API key。

import os
import getpassos.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")# Uncomment the following line if you need to initialize FAISS with no AVX2 optimization
# 如果您需要在没有 AVX2 优化的情况下初始化 FAISS,请取消以下注释
# os.environ['FAISS_NO_AVX2'] = '1'
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import TextLoader

相关api链接:

OpenAIEmbeddings from langchain.embeddings.openai

CharacterTextSplitter from langchain.text_splitter

FAISS from langchain.vectorstores

TextLoader from langchain.document_loaders

from langchain.document_loaders import TextLoaderloader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)embeddings = OpenAIEmbeddings()

参考API:
TextLoader from langchain.document_loaders

db = FAISS.from_documents(docs, embeddings)query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content)

结果:

今晚。我呼吁参议院: 通过《投票自由法案》。通过约翰·刘易斯投票权法案。当你这样做的时候,通过《披露法案》,这样美国人就可以知道谁在资助我们的选举。
今晚,我要向一位毕生为这个国家服务的人表示敬意:斯蒂芬·布雷耶法官——退伍军人、宪法学者、即将退休的美国最高法院法官。布雷耶法官,感谢您的服务。
总统最重要的宪法责任之一是提名某人在美国最高法院任职。
四天前,当我提名巡回上诉法院法官科坦吉·布朗·杰克逊时,我就这样做了。我们国家最顶尖的法律头脑之一,他将继承布雷耶大法官的卓越遗产。

使用分数进行相似性搜索(Similarity Search with score)

有一些 FAISS 特定方法。其中之一是similarity_search_with_score,它不仅允许您返回文档,还允许返回查询到它们的距离分数。返回的距离分数是L2距离。因此,分数越低越好。

docs_and_scores = db.similarity_search_with_score(query)
docs_and_scores[0]

结果:

    (Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'}),0.36913747)

还可以使用similarity_search_by_vector 与给定嵌入向量相似的文档进行搜索,该向量接受嵌入向量作为参数而不是字符串。

# embed 向量
embedding_vector = embeddings.embed_query(query)
# embed 向量作为入参:embedding_vector
docs_and_scores = db.similarity_search_by_vector(embedding_vector)

保存和加载(Saving and loading)

您还可以保存和加载 FAISS 索引。这很有用,因此我们不必每次使用它时都重新创建它。

db.save_local("faiss_index")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(query)
docs[0]

结果:

    Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../../state_of_the_union.txt'})

合并(Merging)

您还可以合并两个 FAISS 向量存储

db1 = FAISS.from_texts(["foo"], embeddings)
db2 = FAISS.from_texts(["bar"], embeddings)
# 打印第一个FAISS
db1.docstore._dict

结果:

    {'068c473b-d420-487a-806b-fb0ccea7f711': Document(page_content='foo', metadata={})}
# 打印第二个FAISS
db2.docstore._dict

结果:

    {'807e0c63-13f6-4070-9774-5c6f0fbb9866': Document(page_content='bar', metadata={})}
# 合并
db1.merge_from(db2)
# 打印
db1.docstore._dict

结果:

    {'068c473b-d420-487a-806b-fb0ccea7f711': Document(page_content='foo', metadata={}),'807e0c63-13f6-4070-9774-5c6f0fbb9866': Document(page_content='bar', metadata={})}

带过滤的相似性搜索(Similarity Search with filtering)

FAISS vectorstore 还可以支持过滤,因为 FAISS 本身不支持过滤,我们必须手动执行。

首先获取多于 k个结果,然后过滤它们来完成的。您可以根据元数据过滤文档。

您还可以在调用任何搜索方法时设置 fetch_k 参数,以设置在过滤之前要获取的文档数量。这是一个小例子:

from langchain.schema import Document
# 先构造文档数据,方便后面的测试
list_of_documents = [Document(page_content="foo", metadata=dict(page=1)),Document(page_content="bar", metadata=dict(page=1)),Document(page_content="foo", metadata=dict(page=2)),Document(page_content="barbar", metadata=dict(page=2)),Document(page_content="foo", metadata=dict(page=3)),Document(page_content="bar burr", metadata=dict(page=3)),Document(page_content="foo", metadata=dict(page=4)),Document(page_content="bar bruh", metadata=dict(page=4)),
]
# 构建向量存储
db = FAISS.from_documents(list_of_documents, embeddings)
# 简单搜索下,方便后面的对比
results_with_scores = db.similarity_search_with_score("foo")
# 打印
for doc, score in results_with_scores:print(f"Content: {doc.page_content}, Metadata: {doc.metadata}, Score: {score}")

相关API:Document from langchain.schema

    Content: foo, Metadata: {'page': 1}, Score: 5.159960813797904e-15Content: foo, Metadata: {'page': 2}, Score: 5.159960813797904e-15Content: foo, Metadata: {'page': 3}, Score: 5.159960813797904e-15Content: foo, Metadata: {'page': 4}, Score: 5.159960813797904e-15

现在我们进行相同的查询调用,但我们仅过滤 page = 1:

# 开始使用过滤:filter指定过滤元数据page:1的数据
results_with_scores = db.similarity_search_with_score("foo", filter=dict(page=1))
for doc, score in results_with_scores:print(f"Content: {doc.page_content}, Metadata: {doc.metadata}, Score: {score}")

结果:

    Content: foo, Metadata: {'page': 1}, Score: 5.159960813797904e-15Content: bar, Metadata: {'page': 1}, Score: 0.3131446838378906

同样的事情也可以用 max_marginal_relevance_search 来完成。

# max_marginal_relevance_search
results = db.max_marginal_relevance_search("foo", filter=dict(page=1))
for doc in results:print(f"Content: {doc.page_content}, Metadata: {doc.metadata}")

结果:

# 相比上面,少了ScoreContent: foo, Metadata: {'page': 1}Content: bar, Metadata: {'page': 1}

以下是调用similarity_search时如何设置 fetch_k 参数的示例。
通常我们需要 fetch_k参数 >> k 参数

这是因为 fetch_k 参数是过滤之前将获取的文档数。如果将 fetch_k 设置为较小的数字,则可能无法获得足够的文档进行过滤。

# k设置过滤后得到的文档数、fetch_k设置过滤前的文档数
results = db.similarity_search("foo", filter=dict(page=1), k=1, fetch_k=4)
for doc in results:print(f"Content: {doc.page_content}, Metadata: {doc.metadata}")

结果:

    Content: foo, Metadata: {'page': 1}

总结

本篇主要讲解FAISS的使用。
基本思路:

  1. 加载文档、拆分
  2. 利用embed构造向量存储:db = FAISS.from_documents(docs, embeddings)
  3. 在此基础上,就可以相关性搜索搜索过滤等操作。

参考地址:

https://python.langchain.com/docs/integrations/vectorstores/faiss

http://www.15wanjia.com/news/54327.html

相关文章:

  • 用什么软件做楼盘微网站关键词优化是什么工作
  • 网站设计的七个原则模板之家官网
  • 镇江地区做网站的公司网络推广电话销售技巧和话术
  • 网站推广营销怎么做搜索引擎营销概念
  • 个人可以做哪些有意思的网站西安企业做网站
  • 工作经历怎么填写河南seo快速排名
  • 广州做网站优化小红书信息流广告
  • wordpress精美博客主题苏州seo建站
  • 长沙网络营销首选智投未来成都百度搜索排名优化
  • 购物分享网站怎么做盈利chrome手机版
  • 四川省建设厅职改办网站漳州seo建站
  • 做网站的好处廊坊网站seo
  • 网络设计中网络设备选择的原则惠州企业网站seo
  • dx网站是哪家公司做的郑州本地seo顾问
  • 企业营销网站服务器1g够简单免费制作手机网站
  • 域名主机 网站建设什么是网络推广工作
  • 替网站做任务怎么做的微友圈推广平台怎么加入
  • 广州番禺建设银行网站登录怎么在百度上做推广
  • 广州建站优化公司seo站长工具是什么
  • 小城市企业网站建设免费seo技术教程
  • 物流网站建设方案百度seo
  • 网站制作器手机版舆情分析系统
  • 绵阳公司网站制作公司威海seo公司
  • wordpress get_comment上海百度移动关键词排名优化
  • 网站快速办理备案找索引擎seo
  • 宁波做网站优化价格日本积分榜最新排名
  • 怎么用网站做地标免费行情软件app网站下载大全
  • 全网网站快速排名推广软件广告公司的业务范围
  • 桂林 网站建设百度指数pc版
  • 网站维护与推广定义百度网页入口官网