当前位置: 首页 > news >正文

如何用群晖nas做网站百度代理加盟

如何用群晖nas做网站,百度代理加盟,网站开发合同 保密条款,广州住房和城乡建设部网站哈希表概念 哈希表可以简单理解为:把数据转化为数组的下标,然后用数组的下标对应的值来表示这个数据。如果我们想要搜索这个数据,直接计算出这个数据的下标,然后就可以直接访问数组对应的位置,所以可以用O(1)的复杂度…

哈希表概念

哈希表可以简单理解为:把数据转化为数组的下标,然后用数组的下标对应的值来表示这个数据。如果我们想要搜索这个数据,直接计算出这个数据的下标,然后就可以直接访问数组对应的位置,所以可以用O(1)的复杂度直接找到数据。

其中,这个数据对应的数字叫做关键码(Key),这个把关键码转化为下标的规则,叫做哈希函数(Hash)

要注意的是,有一些数据并不是整型,比如字符串,对象等等。对于这种数据,我们要先用一套规则把它们转化为整数(关键码),然后再通过哈希函数映射为数组下标。


哈希函数

哈希函数原则:

  1. 哈希函数转换后,生成的地址(下标)必须小于哈希表的最大地址(下标)
  2. 哈希函数计算出来的地址(下标)必须均匀地分布
  3. 哈希函数尽可能简单
直接定址法

取关键字的某个线性函数为哈希表的地址:

除留余数法

假设哈希表的地址数目为m,取Keym取模后得到的值作为下标


闭散列 - 开放定址法

闭散列,也叫做开放定址法,当发生哈希冲突时,如果哈希表没有被装满,说明哈希表中还有空位置,那么我们可以把发生冲突的数据放到下一个空位置去。

基本结构

首先我们需要一个枚举,来标识哈希表的不同状态:

enum State
{EMPTY,EXIST,DELETE
};

EMPTY:空节点
EXIST:数值存在
DELETE:数值被删除 

哈希表的基本结构:

enum State
{EMPTY,EXIST,DELETE
};template<class K, class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;//标记状态
};template<class K, class V>
class HashTable
{
public:HashTable(size_t size = 10){_tables.resize(size);}private:vector<HashData<K, V>> _tables;//哈希表size_t _n = 0;//元素个数
};

HashTable构造函数:

HashTable(size_t size = 10)
{_tables.resize(size);
}

查找

想要在哈希表中查找数据,无非就遵顼以下规则:

通过哈希函数计算出数据对应的地址
去地址处查找,如果地址处不是目标值,往后继续查找
遇到EMPTY还没有找到,说明数据不存在哈希表中
遇到DELETEEXIST,继续往后查找

代码如下:

HashData<K, V>* Find(const K& key)
{size_t hashi = key % _tables.size();while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)return &_tables[hashi];hashi++;hashi %= _tables.size();}return nullptr;
}

但是当前的代码存在一个问题:哈希表作用于泛型,key % _tables.size()有可能是违法的行为,因为key可能不是一个数字。

对此我们可以在模板中多加一个仿函数的参数,用户可以在仿函数中自定义数据 -> 整型的转换规则,然后我们在对这个整型使用除留余数法获取地址。

在那之前,我们可以先写一个仿函数,用于处理整型 -> 整型的转化:

struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};

在STL中,整型-> 整型转化的函数,被写为了一个模板,而这个string -> 整型被写为了一个模板特化:

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};

我们将这个HashFunc<K>仿函数作为哈希表的第三个模板参数的默认值:

template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{};

通过仿函数来统一获得整型,再进行除留余数操作:

Hash hs;
size_t hashi = hs(key) % _tables.size();

插入

插入的基本逻辑如下:

  1. 先通过Find接口,查找目标值在不在哈希表中,如果目标值已经存在,返回flse,表示插入失败
  2. 通过哈希函数计算出目标值对应的下标
  3. 向下标中插入数据:如果下标对应的位置已经有数据,往后查找,直到某一个位置为EMPTY或者DELETE.如果下标对应的位置没有数据,直接插入
  4. 插入后,把对应位置的状态转化为EXIST

代码如下:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;Hash hs;//仿函数实例化出的对象size_t hashi = hs(kv.first) % _tables.size();//获得目标值对应的下标while (_tables[hashi]._state == EXIST)//往后查找合适的位置插入{hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;//插入_tables[hashi]._state = EXIST;//改变状态_n++;//哈希表中的元素个数+1return true;
}

当这个哈希表越满,我们查找数据的效率就越低,甚至说:如果查找一个不存在的数据,我们可能要用O(N)的复杂度遍历整个哈希表.因此我们因该把哈希表的负载率控制在一定值,当超过一定值,我们就要进行扩容操作。

if ((double)_n / _tables.size() >= 0.7)
{size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);
}

插入总代码:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;if ((double)_n / _tables.size() >= 0.7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);}Hash hs;size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;_n++;return true;
}
删除

先通过Find接口找到要删除的值

  • 如果没找到,返回false,表示删除失败
  • 如果找到,把对应节点的状态改为DELETE

最后再把哈希表的_n - 1,表示存在的节点数少了一个。

代码如下:

bool Erase(const K& key)
{HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_n--;return true;}return false;
}

总代码展示

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};enum State
{EMPTY,EXIST,DELETE
};template<class K, class V>
struct HashData
{pair<K, V> _kv;State _state = EMPTY;//标记状态
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:HashTable(size_t size = 10){_tables.resize(size);}HashData<K, V>* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._kv.first == key&& _tables[hashi]._state == EXIST)return &_tables[hashi];hashi++;hashi %= _tables.size();}return nullptr;}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;if ((double)_n / _tables.size() >= 0.7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT(newSize);for (auto& e : _tables){if (e._state == EXIST)newHT.Insert(e._kv);}_tables.swap(newHT._tables);}Hash hs;size_t hashi = hs(kv.first) % _tables.size();while (_tables[hashi]._state == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;_n++;return true;}bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_state = DELETE;_n--;return true;}return false;}private:vector<HashData<K, V>> _tables;size_t _n = 0;//元素个数
};

开散列 - 哈希桶

在STL库中,采用的是更加优秀的开散列方案。

哈希表的数组vector中,不再直接存储数据,而是存储一个链表的指针。当一个数值映射到对应的下标后,就插入到这个链表中。其中每一个链表称为一个哈希桶,每个哈希桶中,存放着哈希冲突的元素.

基本结构

对于每一个节点,其要存储当前节点的值,也要存储下一个节点的指针,基本结构如下:

template<class K, class V>
struct HashNode
{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}
};

哈希表:

template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(size_t size = 10){_tables.resize(size);}private:vector<Node*> _tables; //链表指针数组size_t _n = 0;//元素个数
};

析构函数,防止内存泄漏:

~HashTable()
{for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}
}
查找

查找的基本逻辑如下:

  1. 先通过哈希函数计算出数据对应的下标
  2. 通过下标找到对应的链表
  3. 遍历链表,找数据:如果某个节点的数据匹配上了,返回该节点指针,如果遍历到了nullptr,返回空指针表示没找到

代码如下:

Node* Find(const K& key)
{Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur = cur->_next;}return nullptr;
}
插入

插入的基本逻辑如下:

  1. 先通过Find接口,查找目标值在不在哈希表中,如果目标值已经存在,返回flse,表示插入失败
  2. 通过哈希函数计算出目标值对应的下标
  3. 向下标中插入数据

代码如下:

bool Insert(const pair<K, V>& kv)
{if (Find(kv.first))return false;Hash hs;size_t hashi = hs(kv.first) % _tables.size();//计算下标Node* newNode = new Node(kv);//创建节点newNode->_next = _tables[hashi];//头插_tables[hashi] = newNode;++_n;//更新元素个数return true;
}

关于扩容:如果我们单纯的进行插入,就要把原先的所有节点释放掉,再创建新的节点。这样会浪费很多时间。我们最好把原先创建的节点利用起来,因此我们要重写一个逻辑,把原先的节点进行迁移。 

if (_n == _tables.size())
{vector<Node*> newTables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hs(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr; //防止移交的节点被析构}_tables.swap(newTables);
}
删除

删除逻辑:

  1. 通过哈希函数计算出对应的下标
  2. 到对应的哈希桶中查找目标值
  • 如果找到,删除对应的节点
  • 如果没找到,返回false表示删除失败
  • _n - 1表示删除了一个元素

代码如下:

bool Erase(const K& key)
{Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev)prev->_next = cur->_next;else_tables[hashi] = cur->_next;delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;
}

代码展示

template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};template<>
struct HashFunc<string>
{size_t operator()(const string& s){size_t hash = 0;for (auto& e : s)//把字符串的每一个字符ASCII码值加起来{hash += e;hash *= 131; // 31, 131313(任意由1,3间断排列的数字)}return hash;}
};template<class K, class V>
struct HashNode
{HashNode<K, V>* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv),_next(nullptr){}
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{typedef HashNode<K, V> Node;
public:HashTable(size_t size = 10){_tables.resize(size);}~HashTable(){for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}Node* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key)return cur;cur = cur->_next;}return nullptr;}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;Hash hs;//哈希桶情况下,负载因子到1才扩容if (_n == _tables.size()){vector<Node*> newTables(_tables.size() * 2, nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;size_t hashi = hs(cur->_kv.first) % newTables.size();cur->_next = newTables[hashi];newTables[hashi] = cur;cur = next;}_tables[i] = nullptr; //防止移交的节点被析构}_tables.swap(newTables);}size_t hashi = hs(kv.first) % _tables.size();Node* newNode = new Node(kv);newNode->_next = _tables[hashi];_tables[hashi] = newNode;++_n;return true;}bool Erase(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev)prev->_next = cur->_next;else_tables[hashi] = cur->_next;delete cur;--_n;return true;}prev = cur;cur = cur->_next;}return false;}private:vector<Node*> _tables; //链表指针数组size_t _n = 0;//元素个数
};

http://www.15wanjia.com/news/5342.html

相关文章:

  • 旧版草莓无线观看网站微信引流获客软件
  • 亚马逊网站做外贸seo排名计费系统
  • 紫金优化网站制作百度经验悬赏令
  • 网站开发调查问卷品牌推广文案
  • 成都网站建设cdcidi高权重友情链接
  • wordpress 主题作者页seo技术外包
  • 网站制作长春淘宝seo对什么内容优化
  • 营利性网站的域名怎么做关键词排名优化系统
  • 建设网站南昌网络营销包括的主要内容有
  • 成都网站建设公司官网百度站长工具
  • 小公司做网站赚钱吗销售的技巧与口才
  • 养老网站备案必须做前置审批吗漂亮的网页设计
  • 网站建设公司网站源码合肥seo软件
  • 做商城网站怎么做个人博客网站设计毕业论文
  • 基层建设刊物网站互联网广告联盟
  • 山西建工网登录seo网络公司
  • 什么是网络营销企业百度官网优化
  • 嘉兴网络推广的平台有哪些深圳seo专家
  • 地区网站建设服务周到seo的主要内容
  • 现在还有没有做任务的网站seo推荐
  • 微网站建设报价方案一站式推广平台
  • 新手如何优化网站排名seo是网络优化吗
  • b2c网站大全发布平台seo专员是什么意思
  • wordpress中文章安顺seo
  • 注册域名后怎么做网站营销型企业网站有哪些
  • 个人建网站首选什么域名好河北网站seo地址
  • 企业型网站价目表竞价推广招聘
  • 网络工程师考试时间seo优化方案案例
  • 网站落地页是什么意思百度一下浏览器下载安装
  • wordpress媒体库迁移seo免费推广