当前位置: 首页 > news >正文

十堰做网站最专业的公司人工智能培训师

十堰做网站最专业的公司,人工智能培训师,新闻网站建设管理制度,帝国网站管理系统前台【人工智能】— 神经网络、前向传播、反向传播 前向传播反向传播梯度下降局部最小值多层前馈网络表示能力多层前馈网络局限缓解过拟合的策略 前向传播和反向传播都是神经网络训练中常用的重要算法。 前向传播是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后…

【人工智能】— 神经网络、前向传播、反向传播

  • 前向传播
  • 反向传播
  • 梯度下降
  • 局部最小值
  • 多层前馈网络表示能力
  • 多层前馈网络局限
  • 缓解过拟合的策略

前向传播和反向传播都是神经网络训练中常用的重要算法。

前向传播是指将输入数据从输入层开始经过一系列的权重矩阵和激活函数的计算后,最终得到输出结果的过程。在前向传播中,神经网络会将每一层的输出作为下一层的输入,直到输出层得到最终的结果。

反向传播是指在神经网络训练过程中,通过计算损失函数的梯度,将梯度从输出层开始逆向传播到输入层,以更新每一层的权重参数。在反向传播中,通过计算梯度,可以得到每个神经元的误差,进而调整其权重和偏置,以最小化损失函数。

前向传播

在这里插入图片描述

反向传播

在这里插入图片描述

  1. 𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 = 𝑔’(𝑥𝐿)
    这个公式表示输出层对输入层的偏导数,它等于激活函数关于输入的导数,即𝑔’。

  2. 𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿−1 = 𝑊𝐿−1 · (𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1))
    这个公式表示倒数第L-1层对第L层的偏导数,它等于第L层权重矩阵𝑊𝐿−1乘以(𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1)),其中𝑓’表示激活函数的导数。

  3. 𝜕𝑙𝑜𝑠𝑠/𝜕𝑤𝐿−1 = (𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1)) · 𝑥𝐿−1
    这个公式表示对第L-1层的权重𝑤𝐿−1求偏导数,它等于(𝜕𝑙𝑜𝑠𝑠/𝜕𝑥𝐿 ⊙ 𝑓’(𝑊𝐿−1𝑥𝐿−1))乘以第L-1层的输入𝑥𝐿−1。

这些公式描述了反向传播算法中的梯度计算过程,它们用于更新神经网络中的权重以最小化损失函数。

梯度下降

假设神经网络中只有两个参数 w 1 w_1 w1 w 2 w_2 w2。在梯度下降算法中,我们通过计算损失函数 C C C 关于参数的偏导数来确定梯度方向,并乘以学习率 η \eta η 来确定参数更新的步幅。这样反复迭代更新参数,直到达到收敛或满足停止条件。

具体步骤如下:

  1. 随机选择一个起始点 θ 0 \theta_0 θ0
  2. 计算在 θ 0 \theta_0 θ0 处的负梯度 − ∇ C ( θ 0 ) -\nabla C(\theta_0) C(θ0)
  3. 将负梯度与学习率 η \eta η 相乘。
  4. 更新参数:
    θ 0 = θ 0 − η ⋅ ∇ C ( θ 0 ) \theta_0 = \theta_0 - \eta \cdot \nabla C(\theta_0) θ0=θ0ηC(θ0)

其中, ∇ C ( θ 0 ) \nabla C(\theta_0) C(θ0) 是损失函数关于参数的偏导数组成的梯度。在二维空间中,可以表示为 ∇ C ( θ 0 ) = ( ∂ C ( θ 0 ) ∂ w 1 , ∂ C ( θ 0 ) ∂ w 2 ) \nabla C(\theta_0) = \left(\cfrac{\partial C(\theta_0)}{\partial w_1}, \cfrac{\partial C(\theta_0)}{\partial w_2}\right) C(θ0)=(w1C(θ0),w2C(θ0))

通过不断迭代更新参数,我们可以优化网络的性能,使损失函数最小化。

在这里插入图片描述
在这里插入图片描述

局部最小值

梯度下降算法并不保证能够达到全局最小值。不同的初始点 θ 0 \theta_0 θ0 可能会收敛到不同的局部最小值,因此会得到不同的结果。

这是因为神经网络的损失函数通常是非凸的,存在多个局部最小值。在非凸损失函数的情况下,梯度下降可能会陷入局部最小值而无法达到全局最小值。这就是为什么在训练神经网络时,初始点的选择非常重要。

然而,尽管梯度下降可能无法找到全局最小值,但在实际应用中,局部最小值往往已经足够好。此外,使用正则化和其他技巧可以帮助提高算法的鲁棒性,减少陷入不良局部最小值的风险。

因此,虽然非凸损失函数可能带来挑战,但梯度下降仍然是一种有效的优化方法,广泛应用于训练神经网络和其他机器学习模型中。
在这里插入图片描述

多层前馈网络表示能力

只需要一个包含足够多神经元的隐层, 多层前馈神经网络就能以任意精度逼近任意复杂度的连续函数

多层前馈网络局限

• 神经网络由于强大的表示能力, 经常遭遇过拟合. 表现为:训练误差持续降低, 但测试误差却可能上升
• 如何设置隐层神经元的个数仍然是个未决问题. 实际应用中通常使用“试错法”调整

缓解过拟合的策略

• 早停:在训练过程中, 若训练误差降低, 但验证误差升高, 则停止训练
• 正则化:在误差目标函数中增加一项描述网络复杂程度的部分, 例如连接权值与阈值的平方和

http://www.15wanjia.com/news/52313.html

相关文章:

  • 兰州科技公司有哪些品牌seo如何优化
  • 东莞网站建设服务公司怎么在百度免费推广
  • 快速建立平台网站开发建站教程详解广州新闻发布
  • 做网盘搜索网站长沙有实力的关键词优化价格
  • 嘉兴做外贸网站比较好的公司免费网站自助建站系统
  • 天长两学一做网站最新的全国疫情数据
  • 网站打开速度太慢搜索引擎网站优化和推广方案
  • 怎么用polylang做网站凡科小程序
  • 做一个小说阅读网站怎么做网络营销课程个人总结3000字
  • python做网站点登入没反映seo网络优化师就业前景
  • 项城注册公司代办公司seo优化师是什么
  • 做电脑系统网站seo排名优化
  • 类似电影天堂的网站 怎么做百度信息流投放在哪些平台
  • 郑州网站建设哪里好邀请推广app
  • 网站seo 优化武汉网络营销公司排名
  • 网站登陆注册怎么做网络推广是什么职位
  • 天津网页设计工作商品标题seo是什么意思
  • bluehost建站WordPress百度站长平台注册
  • 男科医院网站开发策划自制网站 免费
  • 二手交易网站设计怎么做制作企业网站
  • 腾讯做电脑吃鸡网站百度爱采购客服电话
  • 手机网站如何推广免费收录链接网
  • 网站是哪家公司做的河南今日头条最新消息
  • 网站那个做的比较好如何制作网页最简单的方法
  • 个人网站创建平台要多少钱搜索网站
  • 有没有做网站源代码 修改的中国新闻网最新消息
  • 网站站点多少钱百度推广关键词多少合适
  • 延庆网站建设搜索广告和信息流广告区别
  • 做解决方案的网站企业线上培训平台有哪些
  • 安徽省建设信息管理平台专业seo推广