当前位置: 首页 > news >正文

网站自然排名这么做爱站seo

网站自然排名这么做,爱站seo,企业网站推广的方式有哪些,xampp 做网站目录 内容概述数据说明技术点主要内容4 会员用户画像和特征字段创造4.1 构建会员用户基本特征标签4.2 会员用户词云分析 5 会员用户细分和营销方案制定5.1 会员用户的聚类分析及可视化5.2 对会员用户进行精细划分并分析不同群体带来的价值差异 内容概述 本项目内容主要是基于P…

目录

  • 内容概述
  • 数据说明
  • 技术点
  • 主要内容
    • 4 会员用户画像和特征字段创造
      • 4.1 构建会员用户基本特征标签
      • 4.2 会员用户词云分析
    • 5 会员用户细分和营销方案制定
      • 5.1 会员用户的聚类分析及可视化
      • 5.2 对会员用户进行精细划分并分析不同群体带来的价值差异

内容概述

本项目内容主要是基于Python的“百货商场用户画像描述与价值分析”,里面有详细的数据预处理、数据可视化和数据建模等步骤。同时,针对传统RFM模型进行了改进,构造了LRFMP模型来分析客户价值,挖掘客户价值的八个字段,并通过WordCloud形式展现了出来,可以对会员用户进行精准画像。

数据说明

数据集分为两部分,.xlsx结尾的是会员信息表,.csv结尾的是销售流水表。其中,会员信息表共有将近19万条记录,销售流水表共有接近189万条记录。

两个表包含了如会员卡号,消费产生时间,性别,出生时间,商品编码,销售数量,商品售价,消费金额,商品名称,此次消费的会员积分,收银机号,单据号,柜组编码,柜组名称,等级时间等 15 个特征。

  • L(入会程度):3个月以下为新用户,4-12个月为中等用户,13个月以上为老用户
  • R(最近购买的时间)
  • F(消费频次):次数20次以上的为高频消费,6-19次为中频消费,5次以下为低频消费
  • M(消费金额):10万以上为高等消费,1万-10万为中等消费,1万以下为低等消费
  • P(消费积分):10万以上为高等积分用户,1万-10万为中等积分用户,1万以下为低等积分用户

技术点

  • 数据预处理:包括去重去缺失值、异常值处理、变量重编码和时间序列数据处理方式等;
  • 数据可视化:饼图、柱状图、折线图、雷达图和复合图等绘制方式等;
  • 特征创造和数据建模:从海量连续数据中创造出性别、消费偏好、入会程度、最近购买的时间、消费频次、消费金额、消费积分等类别数据,建模部分主要通过标准化和归一化数据来对比KMeans聚类的轮廓系数结果。

主要内容

4 会员用户画像和特征字段创造

4.1 构建会员用户基本特征标签

说明积分这一列没有存在异常值
在这里插入图片描述

在这里插入图片描述

查看登记时间和消费产生的时间是否存在异常值,即大于2018-01-03
在这里插入图片描述

筛掉两列异常时间的数据

在这里插入图片描述

说明单个会员有多条消费记录数
在这里插入图片描述

可以先筛选每位会员,然后依据各个字段对进行运算,求出对应的LRFMP

自定义一个函数来实现两列数据时间相减

在这里插入图片描述

开始登记的时间 和 最后一次消费的时间
在这里插入图片描述

调用函数
在这里插入图片描述

会员消费的总次数:
会员消费的总金额:
会员的积分总数:
在这里插入图片描述

创造一列特征字段“消费时间偏好”(凌晨、上午、中午、下午、晚上)

在这里插入图片描述

会员消费的时间偏好,在多项记录中取众数
在这里插入图片描述

会员性别
在这里插入图片描述

开始构建对应的特征标签

在这里插入图片描述

在这里插入图片描述

构建会员用户业务特征标签

取DataFrame之后转置取values得到一个列表,再绘制对应的词云,可以自定义一个绘制词云的函数,输入参数为df和会员卡号

在这里插入图片描述

在这里插入图片描述

查看数据的基本特征

在这里插入图片描述

描述性统计
在这里插入图片描述

开始对数据进行分组

在这里插入图片描述

保存数据

在这里插入图片描述

4.2 会员用户词云分析

开始绘制用户词云,封装成一个函数来直接显示词云

在这里插入图片描述

随机查找一个会员来绘制用户画像
在这里插入图片描述

在这里插入图片描述

5 会员用户细分和营销方案制定

5.1 会员用户的聚类分析及可视化

先对数据进行标准化处理
在这里插入图片描述

对数据进行聚类
在这里插入图片描述

在这里插入图片描述

构造一个绘制聚类可视化效果雷达图的函数

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

从上面可以看出,标准化后的数据聚类效果相较于归一化的更好,且从轮廓系数和聚类雷达图也可以看出,聚类数最佳为2。因此,下面我们使用聚类数为2的标准化数据进行聚类,得到两类客户的LRFMP均值数据,以此来判断两者之间的差异

5.2 对会员用户进行精细划分并分析不同群体带来的价值差异

以聚类数为2贴上对应的标签
在这里插入图片描述

统计一下两类用户之间的差异,发现两类客户之间数量相差过大
在这里插入图片描述

用均值来计算两类样本之间的LRFMP

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

从上面可以看出,标签为1的客户消费频次、消费金额和消费积分均远大于标签为0的客户,且这类客户所占的比例仅有2.3%,可以将其定义为“重要保持会员”。标签为0的客户所占比例为97.7%,其会员登记时间跟标签为1的比较接近,但最近一次消费时间较标签1的还要长,可以将其定义为“一般发展会员”


更多详细内容可看
在这里插入图片描述

http://www.15wanjia.com/news/43770.html

相关文章:

  • 青岛手机建站公司成都最好的网站推广优化公司
  • 电子商城平台网站建设今日足球比赛预测推荐分析
  • 找网站做任务领q币品牌策划ppt案例
  • 赣州网站推广哪家最专业玉林网站seo
  • 简约网站设计优化营商环境的措施建议
  • 苹果手机怎么做网站百度关键词推广方案
  • 粤语seo是什么意思seo顾问能赚钱吗
  • 申请百度账号注册seo推广
  • 三亚网站制作软文营销的五大注意事项
  • wordpress个人建站教程企业网站建设方案策划书
  • 百度广告搜索推广泉州seo排名扣费
  • 网站建设公司怎么推广线上广告宣传方式有哪些
  • 京挑客网站怎么做58精准推广点击器
  • 中小企业建站实战怎么在百度上做推广上首页
  • 如何知道别人的网站流量来自于哪里百度安装下载
  • 东莞品牌营销型网站建设提升排名
  • 代码添加在网站的什么位置网络营销的概念和特征
  • ai网站推荐营销型网站模板
  • 徐州网站备案俄罗斯引擎搜索
  • wordpress设置联系表格榆林seo
  • 网站关键词如何优化免费的网站
  • 虚拟主机如何搭建网站百度资源共享
  • 做电商网站一般需要什么流程国内新闻大事
  • 长沙有什么好玩的室内aso优化排名
  • wordpress看文网站百度拉新推广平台
  • 武汉自适应网站企业自助建站
  • 怎么搭建自己的博客网站外贸独立站怎么建站
  • 老薛主机 wordpress什么是seo文章
  • 手机网站做桌面快捷方式活动推广方案策划
  • 网站服务合同交印花税吗app推广接单平台哪个好