当前位置: 首页 > news >正文

淘宝采用了哪些网络营销方式超级推荐的关键词怎么优化

淘宝采用了哪些网络营销方式,超级推荐的关键词怎么优化,微信链接怎么wordpress,tuzicms做企业手机网站如何一、BPRloss(Bayesian Personalized Ranking loss)是一种用于推荐系统中的损失函数,用于衡量预测的排序与真实的用户行为排序之间的差异。BPRloss的计算过程如下: 输入:BPRloss的输入包括用户u、物品i和物品j&#xff…

一、BPRloss(Bayesian Personalized Ranking loss)是一种用于推荐系统中的损失函数,用于衡量预测的排序与真实的用户行为排序之间的差异。BPRloss的计算过程如下:

  1. 输入:BPRloss的输入包括用户u、物品i和物品j,表示用户u对物品i和物品j的偏好,以及一个表示用户u的潜在因子向量表示。

  2. 预测得分计算:首先,通过计算用户u对物品i和物品j的预测得分来衡量用户对物品的偏好程度。预测得分是通过用户u的潜在因子向量和物品i、物品j的潜在因子向量之间的内积得到的,即score(u,i) = pu • qi和score(u,j) = pu • qj。

  3. 损失计算:接下来,使用BPRloss来计算预测得分的排序损失。BPRloss的目标是最大化用户对真实物品(i)的偏好得分与对负样本物品(j)的偏好得分之间的差异。具体地,BPRloss定义为负对数似然损失函数,即L = -log σ(score(u,i) - score(u,j)),其中σ(x)表示Sigmoid函数,将x映射到(0,1)之间。

  4. 参数更新:在训练过程中,使用梯度下降法来最小化BPRloss。即通过计算BPRloss对用户u和物品i、物品j的潜在因子向量的偏导数,来更新这些潜在因子的数值。梯度的计算涉及BPRloss对得分的偏导数以及得分对潜在因子的偏导数。具体的梯度计算公式可以参考相关论文。

通过最小化BPRloss,推荐系统可以学习到一组潜在因子向量,从而对用户的偏好进行准确预测和排序。这样,在给定用户和物品的情况下,推荐系统可以根据得分来推荐合适的物品给用户。

二、Embloss(Embedding Loss)是一种用于推荐系统中的损失函数,用于衡量预测的向量表示(embedding)与真实的用户行为之间的差异。Embloss的计算过程如下:

  1. 输入:Embloss的输入通常包括用户u、物品i和用户对物品i的反馈(如评分、点击等),以及表示用户和物品的向量表示。

  2. 预测得分计算:首先,通过计算用户u和物品i的预测得分来衡量用户对物品的偏好程度。预测得分是通过用户u的向量表示和物品i的向量表示之间的相似度得到的,可以使用内积、余弦相似度等方式计算。

  3. 损失计算:接下来,使用Embloss来计算预测得分与真实用户行为之间的差异。具体的损失函数取决于用户行为的类型。例如,对于评分预测任务,常用的Embloss函数是均方误差损失(Mean Square Error,MSE),即L = (rating(u,i) - score(u,i))^2,其中rating(u,i)表示用户u对物品i的真实评分。

  4. 参数更新:在训练过程中,使用梯度下降法来最小化Embloss。具体地,通过计算Embloss对用户u和物品i的向量表示的偏导数,来更新这些向量的数值。梯度的计算涉及Embloss对预测得分的偏导数以及预测得分对向量表示的偏导数。

通过最小化Embloss,推荐系统可以学习到一组向量表示,从而能够准确地预测用户的行为。这样,在给定用户和物品的情况下,推荐系统可以根据预测得分来推荐合适的物品给用户。

三、在推荐系统中,Cross Entropy Loss(交叉熵损失)是一种用于分类任务的损失函数,用于衡量预测的概率分布与真实标签之间的差异。具体计算过程如下:

  1. 输入:Cross Entropy Loss的输入通常包括用户u、物品i和用户对物品i的反馈(如评分、点击等),以及表示用户和物品的向量表示。

  2. 预测概率计算:首先,通过计算用户u对物品i属于每个类别的概率分布来衡量用户对物品的偏好程度。这些概率可以通过用户u的向量表示和物品i的向量表示之间的相似度通过一个softmax函数计算得到。

  3. 真实标签编码:根据用户对物品的反馈,将其转化为真实标签。例如,对于点击预测任务,可以将点击事件编码为1,未点击编码为0。

  4. 损失计算:使用Cross Entropy Loss来计算预测的概率分布与真实标签之间的差异。具体的损失函数可以表示为L = -Σ(y * log(p)),其中y是真实标签的编码,p是预测的概率分布。

  5. 参数更新:在训练过程中,使用梯度下降法来最小化Cross Entropy Loss。具体地,通过计算Cross Entropy Loss对用户u和物品i的向量表示的偏导数,来更新这些向量的数值。梯度的计算涉及Cross Entropy Loss对预测概率的偏导数以及预测概率对向量表示的偏导数。

通过最小化Cross Entropy Loss,推荐系统可以学习到一组向量表示,从而能够准确地预测用户的行为。这样,在给定用户和物品的情况下,推荐系统可以根据预测的概率分布来推荐合适的物品给用户。

http://www.15wanjia.com/news/41332.html

相关文章:

  • php网站留言板是怎么做的青岛网站排名提升
  • 西安做网站公司有哪些天津seo关键词排名优化
  • 嘉兴免费网站建站模板太原网站优化
  • 网站做301好不好全网热度指数
  • 广州外贸网站制作公司网站百度收录突然消失了
  • 石家庄网站定做网页制作模板
  • 百度回收网站搭建今日新闻头条新闻今天
  • 网站开发主管seo关键词排名优化怎样收费
  • 广州做网站哪家公司好内容营销成功案例
  • 称多县网站建设公司上海网站推广公司
  • 网站导航优化口碑营销的主要手段有哪些
  • 上海做网站的免费建一个自己的网站
  • 焦溪翠冠梨做的网站关键词指数查询工具
  • 怎么做根优酷差不多的网站百度人工服务在线咨询
  • 沂水住房与城乡建设局网站下载百度app并安装
  • 如果让你建设网站之前你会想什么企业网络推广方案
  • 网站大幅广告无锡网站建设方案优化
  • 重庆建设摩托官方网站免费网站alexa排名查询
  • 中国十大旅游网站营销型网站建设模板
  • 合肥城市建设网站一站式营销平台
  • 网站首页的布局精准营销
  • 做网站大图片西安网站外包
  • 成都 企业 网站建设今日军事头条
  • 建筑网站知识大全大数据营销的案例
  • 北京 网站设计 地址通州百度福州分公司
  • wordpress建站教程书推荐竞价防恶意点击
  • 中国机械加工网订单app优化推广
  • 网站建设论坛报告企业网站制作模板
  • 衡阳县专业做淘宝网站发布软文的平台有哪些
  • 网站如何做响应式布局app开发网站