当前位置: 首页 > news >正文

桂阳网站建设福州seo推广优化

桂阳网站建设,福州seo推广优化,网站开发工具的选择,用vs2010做网站优化器 官网如何构造一个优化器优化器的step方法coderunning log出现下面问题如何做反向优化? 官网 https://pytorch.org/docs/stable/optim.html 提问:优化器是什么 要优化什么 优化能干什么 优化是为了解决什么问题 优化模型参数 如何构造一个优化器…

优化器

  • 官网
  • 如何构造一个优化器
  • 优化器的step方法
  • code
  • running log
    • 出现下面问题如何做反向优化?

官网

https://pytorch.org/docs/stable/optim.html

在这里插入图片描述
提问:优化器是什么 要优化什么 优化能干什么 优化是为了解决什么问题
优化模型参数

如何构造一个优化器

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)  # momentum SGD优化算法用到的参数
optimizer = optim.Adam([var1, var2], lr=0.0001)
  1. 选择一个优化器算法,如上 SGD 或者 Adam
  2. 第一个参数 需要传入模型参数
  3. 第二个及后面的参数是优化器算法特定需要的,lr 学习率基本每个优化器算法都会用到

优化器的step方法

会利用模型的梯度,根据梯度每一轮更新参数
optimizer.zero_grad() # 必须做 把上一轮计算的梯度清零,否则模型会有问题

for input, target in dataset:optimizer.zero_grad()  # 必须做 把上一轮计算的梯度清零,否则模型会有问题output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()

or 把模型梯度包装成方法再调用

for input, target in dataset:def closure():optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()return lossoptimizer.step(closure)

code

import torch
import torchvision
from torch import nn, optim
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWritertest_set = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)dataloader = DataLoader(test_set, batch_size=1)class MySeq(nn.Module):def __init__(self):super(MySeq, self).__init__()self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 32, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Conv2d(32, 64, kernel_size=5, stride=1, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return x# 定义loss
loss = nn.CrossEntropyLoss()
# 搭建网络
myseq = MySeq()
print(myseq)
# 定义优化器
optmizer = optim.SGD(myseq.parameters(), lr=0.001, momentum=0.9)
for epoch in range(20):running_loss = 0.0for data in dataloader:imgs, targets = data# print(imgs.shape)output = myseq(imgs)optmizer.zero_grad()  # 每轮训练将梯度初始化为0  上一次的梯度对本轮参数优化没有用result_loss = loss(output, targets)result_loss.backward()  # 优化器需要每个参数的梯度, 所以要在backward() 之后执行optmizer.step()  # 根据梯度对每个参数进行调优# print(result_loss)# print(result_loss.grad)# print("ok")running_loss += result_lossprint(running_loss)

running log

loss由小变大最后到nan的解决办法:

  1. 降低学习率
  2. 使用正则化技术
  3. 增加训练数据
  4. 检查网络架构和激活函数

出现下面问题如何做反向优化?

Files already downloaded and verified
MySeq((model1): Sequential((0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Flatten(start_dim=1, end_dim=-1)(7): Linear(in_features=1024, out_features=64, bias=True)(8): Linear(in_features=64, out_features=10, bias=True))
)
tensor(18622.4551, grad_fn=<AddBackward0>)
tensor(16121.4092, grad_fn=<AddBackward0>)
tensor(15442.6416, grad_fn=<AddBackward0>)
tensor(16387.4531, grad_fn=<AddBackward0>)
tensor(18351.6152, grad_fn=<AddBackward0>)
tensor(20915.9785, grad_fn=<AddBackward0>)
tensor(23081.5254, grad_fn=<AddBackward0>)
tensor(24841.8359, grad_fn=<AddBackward0>)
tensor(25401.1602, grad_fn=<AddBackward0>)
tensor(26187.4961, grad_fn=<AddBackward0>)
tensor(28283.8633, grad_fn=<AddBackward0>)
tensor(30156.9316, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
http://www.15wanjia.com/news/38520.html

相关文章:

  • 自己用笔记本做网站企业网页制作
  • 松原做公司网站百度推广做二级域名
  • 做视频网站视频的软件百度一下官方网址
  • 休闲农庄网站软文广告经典案例300大全
  • 怎么做网站手机版seo搜索引擎优化实战
  • 门窗网站源码网络营销的四大特点
  • 网站做cdn怎么弄com域名注册
  • 为什么我的电脑有些网站打不开seo网站建设优化
  • 美工培训班学校网站seo工具
  • 常州微信网站制作网络推广员
  • 完善网站的建设工作360地图下载最新版
  • 中国建设银行投诉网站sem推广计划
  • .net 网站自动登录什么是搜索引擎营销?
  • 做网站用的背景图长春网络科技公司排名
  • 别人做的网站打不开企业管理培训机构排名前十
  • wordpress注册用户上传权限seo教程培训
  • 番禺网站建设a2345成都营销型网站制作
  • 怎么样做网站代理商国际购物网站平台有哪些
  • 上海微信公众号外包seo优化网站的注意事项
  • 网站推广的最终目的是什么优化网站关键词
  • apache 配置网站地址新品上市怎么推广词
  • 青岛企业网站seo技巧阿里指数app下载
  • c 可以做网站嘛汕头网站建设技术外包
  • 做宣传海报的网站seo范畴有哪些
  • 北京网站制作公司关键词seo排名优化软件
  • 网站准备建设的内容yandere搜索引擎入口
  • 网站制作租用空间百度关键词多少钱一个月
  • 登封快乐送餐在那个网站做的广告企业产品网络推广
  • 用书籍上的文章做网站SEO百度网盘pc网页版入口
  • 网站的布局怎么做最简短的培训心得