当前位置: 首页 > news >正文

阿里云服务器发布网站优化大师的三大功能

阿里云服务器发布网站,优化大师的三大功能,建e网卧室设计效果图,怎样查询网站的建设公司一般来说&#xff0c;数值类型的极值是一个与平台相关的特性。C标准程序库通过template numeric_limits提供这些极值&#xff0c;取代传统C语言所采用的预处理常数。你仍然可以使用后者&#xff0c;其中整数常数定义于<climits>和<limits.h>&#xff0c;浮点常数定…

一般来说,数值类型的极值是一个与平台相关的特性。C++标准程序库通过template numeric_limits提供这些极值,取代传统C语言所采用的预处理常数。你仍然可以使用后者,其中整数常数定义于<climits>和<limits.h>,浮点常数定义于<cfloat>和<float.h>,新的极值概念有两个优点,一是提供了更好的类型安全性,二是程序员可借此写出一些template以核定这些极值。

1. 函数介绍

membertypeproperty
is_specializedbooltrue for all arithmetic types (i.e., those for which numeric_limits is specialized).
false for all other types.
min()TMinimum finite value.
For floating types with denormalization (variable number of exponent bits): minimum positive normalized value.
Equivalent to CHAR_MIN, SCHAR_MIN, SHRT_MIN, INT_MIN, LONG_MIN, LLONG_MIN, FLT_MIN, DBL_MIN, LDBL_MIN or 0, depending on type.
max()TMaximum finite value.
Equivalent to CHAR_MAX, SCHAR_MAX, UCHAR_MAX, SHRT_MAX, USHRT_MAX, INT_MAX, UINT_MAX, LONG_MAX, ULONG_MAX, LLONG_MAX, ULLONG_MAX, UINT_LEAST16_MAX, UINT_LEAST32_MAX, FLT_MAX, DBL_MAX or LDBL_MAX, depending on type.
lowest()TMinimum finite value. (since C++11)
For integral types: the same as min().
For floating-point types: implementation-dependent; generally, the negative of max().
digitsintFor integer types: number of non-sign bits (radix base digits) in the representation.
For floating types: number of digits (in radix base) in the mantissa (equivalent to FLT_MANT_DIG, DBL_MANT_DIG or LDBL_MANT_DIG).
digits10intNumber of digits (in decimal base) that can be represented without change.
Equivalent to FLT_DIG, DBL_DIG or LDBL_DIG for floating types.
max_digits10intNumber of digits (in decimal base) required to ensure that values that differ are always differentiated.
is_signedbooltrue if type is signed.
is_integerbooltrue if type is integer.
is_exactbooltrue if type uses exact representations.
radixintFor integer types: base of the representation.
For floating types: base of the exponent of the representation (equivalent to FLT_RADIX).
epsilon()TMachine epsilon (the difference between 1 and the least value greater than 1 that is representable).
Equivalent to FLT_EPSILON, DBL_EPSILON or LDBL_EPSILON for floating types.
round_error()TMeasure of the maximum rounding error.
min_exponentintMinimum negative integer value such that radix raised to (min_exponent-1) generates a normalized floating-point number.
Equivalent to FLT_MIN_EXP, DBL_MIN_EXP or LDBL_MIN_EXP for floating types.
min_exponent10intMinimum negative integer value such that 10 raised to that power generates a normalized floating-point number.
Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP or LDBL_MIN_10_EXP for floating types.
max_exponentintMaximum integer value such that radix raised to (max_exponent-1) generates a representable finite floating-point number.
Equivalent to FLT_MAX_EXP, DBL_MAX_EXP or LDBL_MAX_EXP for floating types.
max_exponent10intMaximum integer value such that 10 raised to that power generates a normalized finite floating-point number.
Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP or LDBL_MAX_10_EXP for floating types.
has_infinitybooltrue if the type has a representation for positive infinity.
has_quiet_NaNbooltrue if the type has a representation for a quiet (non-signaling) "Not-a-Number".
has_signaling_NaNbooltrue if the type has a representation for a signaling "Not-a-Number".
has_denormfloat_denorm_styleDenormalized values (representations with a variable number of exponent bits). A type may have any of the following enum values:
denorm_absent, if it does not allow denormalized values.
denorm_present, if it allows denormalized values.
denorm_indeterminate, if indeterminate at compile time.
has_denorm_lossbooltrue if a loss of accuracy is detected as a denormalization loss, rather than an inexact result.
infinity()TRepresentation of positive infinity, if available.
quiet_NaN()TRepresentation of quiet (non-signaling) "Not-a-Number", if available.
signaling_NaN()TRepresentation of signaling "Not-a-Number", if available.
denorm_min()TMinimum positive denormalized value.
For types not allowing denormalized values: same as min().
is_iec559booltrue if the type adheres to IEC-559 / IEEE-754 standard.
An IEC-559 type always has has_infinity, has_quiet_NaN and has_signaling_NaN set to true; And infinity, quiet_NaN and signaling_NaN return some non-zero value.
is_boundedbooltrue if the set of values represented by the type is finite.
is_modulobooltrue if the type is modulo. A type is modulo if it is possible to add two positive numbers and have a result that wraps around to a third number that is less.
trapsbooltrue if trapping is implemented for the type.
tinyness_beforebooltrue if tinyness is detected before rounding.
round_stylefloat_round_styleRounding style. A type may have any of the following enum values:
round_toward_zero, if it rounds toward zero.
round_to_nearest, if it rounds to the nearest representable value.
round_toward_infinity, if it rounds toward infinity.
round_toward_neg_infinity, if it rounds toward negative infinity.
round_indeterminate, if the rounding style is indeterminable at compile time.

2. 函数定义

template <class T> class numeric_limits {
public:static constexpr bool is_specialized = false;static constexpr T min() noexcept { return T(); }static constexpr T max() noexcept { return T(); }static constexpr T lowest() noexcept { return T(); }static constexpr int digits = 0;static constexpr int digits10 = 0;static constexpr bool is_signed = false;static constexpr bool is_integer = false;static constexpr bool is_exact = false;static constexpr int radix = 0;static constexpr T epsilon() noexcept { return T(); }static constexpr T round_error() noexcept { return T(); }static constexpr int min_exponent = 0;static constexpr int min_exponent10 = 0;static constexpr int max_exponent = 0;static constexpr int max_exponent10 = 0;static constexpr bool has_infinity = false;static constexpr bool has_quiet_NaN = false;static constexpr bool has_signaling_NaN = false;static constexpr float_denorm_style has_denorm = denorm_absent;static constexpr bool has_denorm_loss = false;static constexpr T infinity() noexcept { return T(); }static constexpr T quiet_NaN() noexcept { return T(); }static constexpr T signaling_NaN() noexcept { return T(); }static constexpr T denorm_min() noexcept { return T(); }static constexpr bool is_iec559 = false;static constexpr bool is_bounded = false;static constexpr bool is_modulo = false;static constexpr bool traps = false;static constexpr bool tinyness_before = false;static constexpr float_round_style round_style = round_toward_zero;
};

3. 示例

// numeric_limits example
#include <iostream>     // std::cout
#include <limits>       // std::numeric_limitsint main () {std::cout << std::boolalpha;std::cout << "Minimum value for int: " << std::numeric_limits<int>::min() << '\n';std::cout << "Maximum value for int: " << std::numeric_limits<int>::max() << '\n';std::cout << "int is signed: " << std::numeric_limits<int>::is_signed << '\n';std::cout << "Non-sign bits in int: " << std::numeric_limits<int>::digits << '\n';std::cout << "int has infinity: " << std::numeric_limits<int>::has_infinity << '\n';return 0;
}

输出

Minimum value for int: -2147483648
Maximum value for int: 2147483647
int is signed: true
Non-sign bits in int: 31
int has infinity: false

参考文献

http://www.cplusplus.com/reference/limits/numeric_limits/

c++数值极限numeric_limits-CSDN博客

http://www.15wanjia.com/news/36950.html

相关文章:

  • c 网站建设步骤黑帽seo技术有哪些
  • 公司网站内容阿里云域名注册万网
  • 网站建设哪家好互联网推广平台
  • 网站建设的好不好青岛seo整站优化招商电话
  • html5网页设计论文安卓优化
  • 新闻聚合网站开发 技术做任务赚佣金一单10块
  • 怎么用php做新闻网站关键词排名批量查询软件
  • wordpress注册怎么优化关键词排名优化
  • 网络工作室营业执照经营范围桌子seo关键词
  • drupal 网站建设鹤壁网站seo
  • html动漫网站模板下载广州seo排名优化服务
  • 网站建设广告优化关键词排名提升
  • 傻瓜式大型网站开发工具qq代刷网站推广免费
  • 聊城商城网站建设seo收费
  • 做淘宝必备的网站网络营销案例分析题
  • 太原推广型网站建设优化系统
  • 公众号中做微网站网络营销培训
  • 做网站 视频如何在百度提交自己的网站
  • 门户网站手机版站长网站统计
  • 上饶网站建设srsem厦门seo外包
  • 平台赚钱seo网站关键词优化费用
  • 做分销的网站管理方面的培训课程
  • 网站开发与设计多少钱一个网站优秀网站网页设计
  • 网站开发背景怎么写搜索优化
  • dede网站地图栏目如何上传文件广告搜索引擎
  • 创建论坛网站怎么做好网站营销推广
  • 做pc端网站多少钱珠海百度seo
  • 个人免费域名空间建站竞价网官网
  • 做赌博网站会被判多久网站制作策划
  • 德清县住房和城乡建设局网站深圳网络营销和推广渠道