当前位置: 首页 > news >正文

东莞做网站公司首选百度竞价推广账户优化

东莞做网站公司首选,百度竞价推广账户优化,怎么用 做网站,嘉兴做网站优化公司逻辑回归进行鸢尾花分类的案例 背景说明: 基于IDEA Spark 3.4.1 sbt 1.9.3 Spark MLlib 构建逻辑回归鸢尾花分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。 依赖 ThisBui…

逻辑回归进行鸢尾花分类的案例

背景说明:

基于IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建逻辑回归鸢尾花分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。

依赖

ThisBuild / version := "0.1.0-SNAPSHOT"  ThisBuild / scalaVersion := "2.13.11"  lazy val root = (project in file("."))  .settings(  name := "SparkLearning",  idePackagePrefix := Some("cn.lh.spark"),  libraryDependencies += "org.apache.spark" %% "spark-sql" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-core" % "3.4.1",  libraryDependencies += "org.apache.hadoop" % "hadoop-auth" % "3.3.6",     libraryDependencies += "org.apache.spark" %% "spark-streaming" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-10" % "3.4.1",  libraryDependencies += "org.apache.spark" %% "spark-mllib" % "3.4.1",  libraryDependencies += "mysql" % "mysql-connector-java" % "8.0.30"  
)

代码如下:

package cn.lh.spark  import org.apache.spark.ml.{Pipeline, PipelineModel}  
import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}  
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator  
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, StringIndexerModel, VectorIndexer, VectorIndexerModel}  
import org.apache.spark.ml.linalg.{Vectors,Vector}  
import org.apache.spark.rdd.RDD  
import org.apache.spark.sql.{DataFrame, Row, SparkSession}  case class Iris(features: org.apache.spark.ml.linalg.Vector, label: String)  /**  * 二项逻辑斯蒂回归来解决二分类问题  */  
object MLlibLogisticRegression {  def main(args: Array[String]): Unit = {  val spark: SparkSession = SparkSession.builder().master("local[2]")  .appName("Spark MLlib Demo List").getOrCreate()  val irisRDD: RDD[Iris] = spark.sparkContext.textFile("F:\\niit\\2023\\2023_2\\Spark\\codes\\data\\iris.txt")  .map(_.split(",")).map(p =>  Iris(Vectors.dense(p(0).toDouble, p(1).toDouble, p(2).toDouble, p(3).toDouble), p(4).toString()))  import spark.implicits._  val data: DataFrame = irisRDD.toDF()  data.show()  data.createOrReplaceTempView("iris")  val df: DataFrame = spark.sql("select * from iris where label != 'Iris-setosa'")  df.map(t => t(1)+":"+t(0)).collect().foreach(println)  //    构建ML的pipeline  val labelIndex: StringIndexerModel = new StringIndexer().setInputCol("label")  .setOutputCol("indexedLabel").fit(df)  val featureIndexer: VectorIndexerModel = new VectorIndexer().setInputCol("features")  .setOutputCol("indexedFeatures").fit(df)  //    划分数据集  val Array(trainingData, testData) = df.randomSplit(Array(0.7, 0.3))  //    设置逻辑回归模型参数  val lr: LogisticRegression = new LogisticRegression().setLabelCol("indexedLabel")  .setFeaturesCol("indexedFeatures").setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)  //    设置一个labelConverter,目的是把预测的类别重新转化成字符型的  val labelConverter: IndexToString = new IndexToString().setInputCol("prediction")  .setOutputCol("predictedLabel").setLabels(labelIndex.labels)  //    构建pipeline,设置stage,然后调用fit()来训练模型  val lrPipeline: Pipeline = new Pipeline().setStages(Array(labelIndex, featureIndexer, lr, labelConverter))  val lrmodle: PipelineModel = lrPipeline.fit(trainingData)  val lrPredictions: DataFrame = lrmodle.transform(testData)  lrPredictions.select("predictedLabel", "label", "features", "probability")  .collect().foreach { case Row(predictedLabel: String, label: String, features: Vector, prob: Vector) =>  println(s"($label, $features) --> prob=$prob, predicted Label=$predictedLabel")}  //    模型评估  val evaluator: MulticlassClassificationEvaluator = new MulticlassClassificationEvaluator()  .setLabelCol("indexedLabel").setPredictionCol("prediction")  val lrAccuracy: Double = evaluator.evaluate(lrPredictions)  println("Test Error = " + (1.0 - lrAccuracy))  val lrmodel2: LogisticRegressionModel = lrmodle.stages(2).asInstanceOf[LogisticRegressionModel]  println("Coefficients: " + lrmodel2.coefficients+"Intercept: " +  lrmodel2.intercept+"numClasses: "+lrmodel2.numClasses+"numFeatures: "+lrmodel2.numFeatures)  spark.stop()  }  }

运行结果如下:
在这里插入图片描述

http://www.15wanjia.com/news/36356.html

相关文章:

  • 哪些行业做网站多seo排名培训公司
  • 外贸原单童装哪个网站做外贸推广是做什么的
  • 宁波网站的优化网络优化的意义
  • 企业设计网站公司排名优化网站推广网站
  • 广州网络公司政策seo扣费系统源码
  • 网站如何做免费的推广汕头百度网站排名
  • 网站建设实施进度与资源管理百度指数入口
  • 泉州教育网站百度搜索引擎的使用方法
  • 网站建设开发软件广州最新重大新闻
  • 台式电脑做网站服务器昆山网站建设公司
  • 外省公司做网站备案网站推广哪家好
  • 怎么根据别人的网站做自己的网站网站推广的意义和方法
  • 做电商要有网站吗信息流推广
  • 宁波北仑疫情最新通报seo查询排名软件
  • 吉林企业做网站短链接生成器
  • 海东电子商务网站建设福州短视频seo平台
  • 做二维码推送网站百度关键词排名点
  • 做网站推荐源创网络百度搜索引擎优化方式
  • wordpress适合建什么网站软文怎么写比较吸引人
  • 网站开发可以多少钱一个月最近新闻
  • 做网站业务员怎么样营销型网站设计制作
  • 企业网站建设运营app推广渠道有哪些
  • 网站的客服怎么做永久免费进销存管理软件手机版
  • 外贸品牌网站设计全网网络营销
  • 响应式网站开发公司东莞seo网站制作报价
  • 做网站哪家比较好seo舆情优化
  • 做网站咋不用买虚拟机百度竞价怎么操作
  • 网站做优化好还是做推广好怎么自己注册网站
  • 做独立网站需要注意什么好销售管理软件
  • 高端网站建设价格西安优化排名推广