当前位置: 首页 > news >正文

最近国际新闻亚马逊关键词优化怎么做

最近国际新闻,亚马逊关键词优化怎么做,怎么制作网页文件,开源低代码开发平台TOC 前言 代码随想录算法训练营day56 一、Leetcode 583. 两个字符串的删除操作 1.题目 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 示例 1: 输入: word1 "sea",…

@TOC


前言

代码随想录算法训练营day56


一、Leetcode 583. 两个字符串的删除操作

1.题目

给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。

每步 可以删除任意一个字符串中的一个字符。

示例 1:

输入: word1 = "sea", word2 = "eat" 输出: 2 解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"

示例 2:

输入:word1 = "leetcode", word2 = "etco" 输出:4

提示:

1 <= word1.length, word2.length <= 500
word1 和 word2 只包含小写英文字母

来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/delete-operation-for-two-strings

2.解题思路

方法一:最长公共子序列

给定两个字符串 word1word1​ 和 word2word2​,分别删除若干字符之后使得两个字符串相同,则剩下的字符为两个字符串的公共子序列。为了使删除操作的次数最少,剩下的字符应尽可能多。当剩下的字符为两个字符串的最长公共子序列时,删除操作的次数最少。因此,可以计算两个字符串的最长公共子序列的长度,然后分别计算两个字符串的长度和最长公共子序列的长度之差,即为两个字符串分别需要删除的字符数,两个字符串各自需要删除的字符数之和即为最少的删除操作的总次数。

关于最长公共子序列,请读者参考「1143. 最长公共子序列」。计算最长公共子序列的长度的方法见「1143. 最长公共子序列的官方题解」,这里不再具体阐述。

假设字符串 word1word1​ 和 word2word2​ 的长度分别为 mm 和 nn,计算字符串 word1word1​ 和 word2word2​ 的最长公共子序列的长度,记为 lcslcs,则最少删除操作次数为 m−lcs+n−lcsm−lcs+n−lcs。

3.代码实现

```java class Solution { public int minDistance(String word1, String word2) { int m = word1.length(), n = word2.length(); int[][] dp = new int[m + 1][n + 1]; for (int i = 1; i <= m; i++) { char c1 = word1.charAt(i - 1); for (int j = 1; j <= n; j++) { char c2 = word2.charAt(j - 1); if (c1 == c2) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } int lcs = dp[m][n]; return m - lcs + n - lcs; } }

```

二、Leetcode 72. 编辑距离

1.题目

给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')

提示:

0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/edit-distance

2.解题思路

方法一:动态规划

思路和算法

我们可以对任意一个单词进行三种操作:

插入一个字符;删除一个字符;替换一个字符。

题目给定了两个单词,设为 A 和 B,这样我们就能够六种操作方法。

但我们可以发现,如果我们有单词 A 和单词 B:

对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。例如当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 末尾添加一个字符 e,得到相同的 doge;同理,对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的;对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。例如当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。

这样以来,本质不同的操作实际上只有三种:

在单词 A 中插入一个字符;在单词 B 中插入一个字符;修改单词 A 的一个字符。

这样以来,我们就可以把原问题转化为规模较小的子问题。我们用 A = horse,B = ros 作为例子,来看一看是如何把这个问题转化为规模较小的若干子问题的。

在单词 A 中插入一个字符:如果我们知道 horse 到 ro 的编辑距离为 a,那么显然 horse 到 ros 的编辑距离不会超过 a + 1。这是因为我们可以在 a 次操作后将 horse 和 ro 变为相同的字符串,只需要额外的 1 次操作,在单词 A 的末尾添加字符 s,就能在 a + 1 次操作后将 horse 和 ro 变为相同的字符串;在单词 B 中插入一个字符:如果我们知道 hors 到 ros 的编辑距离为 b,那么显然 horse 到 ros 的编辑距离不会超过 b + 1,原因同上;修改单词 A 的一个字符:如果我们知道 hors 到 ro 的编辑距离为 c,那么显然 horse 到 ros 的编辑距离不会超过 c + 1,原因同上。

那么从 horse 变成 ros 的编辑距离应该为 min(a + 1, b + 1, c + 1)。

注意:为什么我们总是在单词 A 和 B 的末尾插入或者修改字符,能不能在其它的地方进行操作呢?答案是可以的,但是我们知道,操作的顺序是不影响最终的结果的。例如对于单词 cat,我们希望在 c 和 a 之间添加字符 d 并且将字符 t 修改为字符 b,那么这两个操作无论为什么顺序,都会得到最终的结果 cdab。

你可能觉得 horse 到 ro 这个问题也很难解决。但是没关系,我们可以继续用上面的方法拆分这个问题,对于这个问题拆分出来的所有子问题,我们也可以继续拆分,直到:

字符串 A 为空,如从 转换到 ro,显然编辑距离为字符串 B 的长度,这里是 2;字符串 B 为空,如从 horse 转换到 ,显然编辑距离为字符串 A 的长度,这里是 5。

因此,我们就可以使用动态规划来解决这个问题了。我们用 D[i][j] 表示 A 的前 i 个字母和 B 的前 j 个字母之间的编辑距离。

72_fig1.PNG

如上所述,当我们获得 D[i][j-1],D[i-1][j] 和 D[i-1][j-1] 的值之后就可以计算出 D[i][j]。

D[i][j-1] 为 A 的前 i 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们在 A 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i][j-1] + 1;D[i-1][j] 为 A 的前 i - 1 个字符和 B 的前 j 个字符编辑距离的子问题。即对于 A 的第 i 个字符,我们在 B 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i-1][j] + 1;D[i-1][j-1] 为 A 前 i - 1 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们修改 A 的第 i 个字符使它们相同,那么 D[i][j] 最小可以为 D[i-1][j-1] + 1。特别地,如果 A 的第 i 个字符和 B 的第 j 个字符原本就相同,那么我们实际上不需要进行修改操作。在这种情况下,D[i][j] 最小可以为 D[i-1][j-1]。

那么我们可以写出如下的状态转移方程:

若 A 和 B 的最后一个字母相同:D[i][j]=min⁡(D[i][j−1]+1,D[i−1][j]+1,D[i−1][j−1])=1+min⁡(D[i][j−1],D[i−1][j],D[i−1][j−1]−1)D[i][j]​=min(D[i][j−1]+1,D[i−1][j]+1,D[i−1][j−1])=1+min(D[i][j−1],D[i−1][j],D[i−1][j−1]−1)​若 A 和 B 的最后一个字母不同:D[i][j]=1+min⁡(D[i][j−1],D[i−1][j],D[i−1][j−1])D[i][j]=1+min(D[i][j−1],D[i−1][j],D[i−1][j−1])

所以每一步结果都将基于上一步的计算结果,示意如下:

72_fig2.PNG

对于边界情况,一个空串和一个非空串的编辑距离为 D[i][0] = i 和 D[0][j] = j,D[i][0] 相当于对 word1 执行 i 次删除操作,D[0][j] 相当于对 word1执行 j 次插入操作。

综上我们得到了算法的全部流程。

3.代码实现

```java class Solution { public int minDistance(String word1, String word2) { int n = word1.length(); int m = word2.length();

// 有一个字符串为空串if (n * m == 0) {return n + m;}// DP 数组int[][] D = new int[n + 1][m + 1];// 边界状态初始化for (int i = 0; i < n + 1; i++) {D[i][0] = i;}for (int j = 0; j < m + 1; j++) {D[0][j] = j;}// 计算所有 DP 值for (int i = 1; i < n + 1; i++) {for (int j = 1; j < m + 1; j++) {int left = D[i - 1][j] + 1;int down = D[i][j - 1] + 1;int left_down = D[i - 1][j - 1];if (word1.charAt(i - 1) != word2.charAt(j - 1)) {left_down += 1;}D[i][j] = Math.min(left, Math.min(down, left_down));}}return D[n][m];
}

}

```

http://www.15wanjia.com/news/3509.html

相关文章:

  • 长春网站建设制作如何推广网站
  • 深圳网站制作企业邮箱个人开发app可以上架吗
  • 用什么软件做网站最好百度游戏客服在线咨询
  • 优秀wordpress插件优化师和运营区别
  • 广州高端网站建设一句简短走心文案
  • 建筑培训网首页安全员seo排名哪家公司好
  • 专门做钱币的网站四川网络推广推广机构
  • 怎么做微信小说网站线上广告投放渠道
  • 网站跳转域名不变关键词搜索量查询
  • 网站上的图片做多大天津放心站内优化seo
  • 常见的网页布局有哪些深圳网站优化平台
  • 想建个企业网站南宁seo做法哪家好
  • 惠州做网站的公司有哪些有什么软件可以推广
  • 专业做室内设计的网站有哪些方面电商网站建设平台
  • 网络诚信 网站应怎么做餐饮营销手段13种手段
  • 做网站如何应用Java合肥网络推广公司
  • 做网站头部为什么很多代码最新网络营销方式
  • 淘宝客自己做网站关键词优化教程
  • 网站建设公司要求什么百度权重1
  • 虹口免费网站制作怎么做蛋糕
  • 建设厅网站文件全渠道营销管理平台
  • 阿里云建设网站好不好搜索引擎搜索器
  • 政府网站建设 费用十大营销模式
  • 知名网站建设公司 北京搜索引擎营销怎么做
  • 做的网站首页图片显示不出来管理培训班
  • 学做炒菜的网站福州网站排名提升
  • 做商城网站企业游戏代理平台
  • thinkphp5 做网站网站是怎么优化的
  • 企业网站源码 可去版权网络域名怎么查
  • 胶南网站建设多少钱交换友情链接的好处