当前位置: 首页 > news >正文

做交通事故的网站广州网站seo地址

做交通事故的网站,广州网站seo地址,世界500强企业正威集团生死局,合肥app开发费用一、边缘检测算子 边缘检测算子是用于检测图像中物体边界的工具。边缘通常表示图像中灰度值或颜色发生显著变化的地方。边缘检测有助于识别图像中的物体形状、轮廓和结构。这些算子通过分析图像的灰度或颜色梯度来确定图像中的边缘。 梯度算子 要得到一幅图像的梯度&#xff0c…

一、边缘检测算子

边缘检测算子是用于检测图像中物体边界的工具。边缘通常表示图像中灰度值或颜色发生显著变化的地方。边缘检测有助于识别图像中的物体形状、轮廓和结构。这些算子通过分析图像的灰度或颜色梯度来确定图像中的边缘。

梯度算子

要得到一幅图像的梯度,则要求在图像的每个像素点位置处计算偏导数。 一阶微分算子能够检测图像中的亮度变化,因此在边缘位置通常有较大的梯度值。通过检测梯度的变化,可以找到图像中的边缘。
在这里插入图片描述
对应的卷积模板
在这里插入图片描述

1、Roberts 算子

原理: 基于交叉差分的梯度算法,通过局部差分计算检测边缘线
在这里插入图片描述

通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。

import cv2
import numpy as np
import matplotlib.pyplot as pltimage = cv2.imread("../images/1.png", cv2.IMREAD_GRAYSCALE)
# 1.定义 Roberts 算子的卷积核
roberts_x = np.array([[1, 0], [0, -1]], dtype=np.float32)
roberts_y = np.array([[0, 1], [-1, 0]], dtype=np.float32)
# 2.二维卷积操作
# 使用 filter2D 函数应用 Roberts 算子卷积核
gradient_x = cv2.filter2D(image, cv2.CV_64F, roberts_x)
gradient_y = cv2.filter2D(image, cv2.CV_64F, roberts_y)# 3.计算梯度幅值
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)# 转换结果为8位图像
gradient_magnitude = np.uint8(gradient_magnitude)# 显示原图、Roberts算子的结果和应用结果
plt.subplot(1, 4, 1)
plt.imshow(image, cmap='gray')
plt.title("Original Image")
plt.axis("off")plt.subplot(1, 4, 2)
plt.imshow(gradient_x, cmap='gray')
plt.title("Roberts X")
plt.axis("off")plt.subplot(1, 4, 3)
plt.imshow(gradient_y, cmap='gray')
plt.title("Roberts Y")
plt.axis("off")plt.subplot(1, 4, 4)
plt.imshow(gradient_magnitude, cmap='gray')
plt.title("Magnitude")
plt.axis("off")plt.show()

在这里插入图片描述

2、Prewitt 算子

Prewitt算子使用中心差分法计算梯度
在这里插入图片描述
相比Roberts 2×2 模板考虑更多的相邻像素,更好地捕捉到图像中的局部变化

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread("../images/1.png", cv2.IMREAD_GRAYSCALE)# 1.使用Prewitt算子
kernelx = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]], dtype=int)
kernely = np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]], dtype=int)
# 2.卷积
gradient_x = cv2.filter2D(img, cv2.CV_64F, kernelx)
gradient_y = cv2.filter2D(img, cv2.CV_64F, kernely)
# 3
# 计算梯度幅值
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)# 转换结果为8位图像
gradient_magnitude = np.uint8(gradient_magnitude)# 显示原图、水平梯度、垂直梯度、Prewitt算子的结果
plt.subplot(141), plt.imshow(img, cmap='gray'), plt.title('Original Image'), plt.axis('off')
plt.subplot(142), plt.imshow(gradient_x, cmap='gray'), plt.title('X'), plt.axis('off')
plt.subplot(143), plt.imshow(gradient_y, cmap='gray'), plt.title('Y'), plt.axis('off')
plt.subplot(144), plt.imshow(gradient_magnitude, cmap='gray'), plt.title('Prewitt Operator'), plt.axis('off')
plt.show()

在这里插入图片描述

3、Laplace

拉普拉斯算子 Laplacian算子是基于二阶导数的边缘检测算子。二阶微分算子主要用于检测图像中的灰度变化的变化率,或者说是梯度的变化率。在边缘处,梯度的变化率最大,因此二阶微分算子会在边缘位置产生较大的响应。在这里插入图片描述在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread('../images/1.png', cv2.IMREAD_GRAYSCALE)# 使用拉普拉斯算子
laplacian = cv2.Laplacian(img, cv2.CV_64F)# 转换结果为8位图像
laplacian = np.uint8(np.absolute(laplacian))# 显示原图和拉普拉斯算子的结果
plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Original Image'), plt.axis('off')
plt.subplot(122), plt.imshow(laplacian, cmap='gray'), plt.title('Laplacian Operator'), plt.axis('off')
plt.show()

在这里插入图片描述

4、Canny算子

Canny基本步骤:
1.去噪:应用高斯滤波来平滑图像
2.找图像的梯度,先将卷积模板分别作用x和y方向,再计算梯度幅值和方向(在这里插入图片描述

3.非极大值抑制:保留梯度方向上的局部极大值,细化边缘
4.确定边缘。使用双阈值算法确定最终的边缘信息
在这里插入图片描述

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像
image = cv2.imread('../images/1.png', cv2.IMREAD_GRAYSCALE)
# 高斯滤波降噪
gaussian = cv2.GaussianBlur(image, (5, 5), 0)
# 使用Canny算子进行边缘检测
edges = cv2.Canny(gaussian, 50, 150)  # 50和150是Canny算子的两个阈值,可调整# 显示原始图像和边缘检测结果
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])plt.subplot(122), plt.imshow(edges, cmap='gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

5、四种算子的比较

在这里插入图片描述

在这里插入图片描述

二、角点检测

在角上 不管你把它朝哪个方向移动,像素值都会发生很大变化。

## 1.

1.Moravec

在这里插入图片描述
注:权重函数在这里插入图片描述当像素位置 (x,y) 位于滑动窗口内时,权重函数为1,否则为0。

E(u,v)越大 越可能是角点

2.harris

在Moravec 基础上 泰勒展开
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
角点响应函数R在这里插入图片描述在这里插入图片描述在这里插入图片描述

3.Shi-Tomasi

Shi-Tomasi 角点检测改进了Harris角点检测算法的R响应函数,R响应函数更加简单高效。在这里插入图片描述

http://www.15wanjia.com/news/3406.html

相关文章:

  • 网站推广究竟应该怎么做软文推广平台排名
  • 网站banner怎么做ps网站排名优化培训电话
  • 佛山低价网站建设市场营销策略
  • 人力资源网站怎么做手机怎么在百度上发布信息
  • 有哪些做婚礼电子请柬的网站大连企业黄页电话
  • 东莞找做网站的灰色词排名接单
  • 长春市建设集团股份有限公司怎么优化自己公司的网站
  • 找人代做网站注意事项怎样搭建一个网站
  • web网站开发技术说明seo流量是什么
  • 分享设计的网站如何做好网络宣传工作
  • 制作app软件工具免费seo关键词优化公司
  • 交互做的比较好的网站做网络推广一个月的收入
  • spring boot做网站百度词条
  • 佛山网站开发哪家好竞价托管服务多少钱
  • 做电影网站犯法网站百度收录批量查询
  • 网站建设 微信 appseo关键词优化排名外包
  • 做网站底色怎么选广告联盟平台排名
  • 找美国的建站公司做网站廊坊百度关键词排名平台
  • 专门做2次元图片的网站seo优化什么意思
  • 怎样找素材做网站怎样优化标题关键词
  • 江苏省政府门户网站建设关键词优化排名工具
  • 江浦做网站网站搭建需要什么
  • 无锡优化网站排名推广平台哪个效果最好
  • 深圳有做网站的吗想做电商怎么入手
  • 爱网站找不到了运城seo
  • 网站横幅背景图片星力游戏源码
  • 网站制作地点seo怎么做优化计划
  • 大型车产品网站建设营销推广工作内容
  • 网站建设与优化计入什么科莫小程序定制开发
  • 室内设计论坛网站微信软文是什么意思