当前位置: 首页 > news >正文

商品标题seo是什么意思网站排名优化需要多久

商品标题seo是什么意思,网站排名优化需要多久,亚运村网站建设,湖州北京网站建设目录 1.概述2.代码实现2.1.聚合操作——求和2.2.聚合操作——求和、求最小值、求最大值 3.应用4.与前缀和之间的区别 更多数据结构与算法的相关知识可以查看数据结构与算法这一专栏。 1.概述 (1)线段树 (Segment Tree) 是一种二叉树形数据结构&#xff…

目录

  • 1.概述
  • 2.代码实现
    • 2.1.聚合操作——求和
    • 2.2.聚合操作——求和、求最小值、求最大值
  • 3.应用
  • 4.与前缀和之间的区别

更多数据结构与算法的相关知识可以查看数据结构与算法这一专栏。

1.概述

(1)线段树 (Segment Tree) 是一种二叉树形数据结构,经常用于高效地处理一维区间的各种查询和修改问题。

(2)一个线段树通常对应于一个区间,每个节点表示一个区间,具体如下图所示。

  • 对于线段树中的每个节点,它有一个区间范围和一个值。
  • 叶节点表示区间中的单个元素,而非叶子节点表示区间中的所有元素。
  • 线段树的每个节点表示区间的一部分,其左子树表示左半部分区间,右子树表示右半部分区间。因此,线段树的叶节点数总是等于数据元素的个数,而线段树的高度为 ⌈logn⌉ + 1,其中 n 为元素总个数。

在这里插入图片描述

① 上图来自线段树_百度百科。
② 一般来说,在代码中会用数组来存储某个区间内的元素,该数组内的元素可以是无序或者有序的,例如,nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 或者 nums = [2, 4, -1, 0, 9] 等。上图中线段树中的区间正好是前一个数组。

(3)线段树的主要优势是能够在 O(logn) 时间复杂度内执行区间查询(如最大值、最小值、区间和等)和区间修改操作(如区间加、区间减等),因此它非常适合解决那些需要频繁区间查询和修改的问题。

2.代码实现

(1)在线段树中,区间的聚合值是指该区间内元素的某种聚合操作的结果。这个聚合操作可以是求和求最小值求最大值等。聚合值的具体含义取决于所解决的问题,本节中分别给出以下两种情况。

(2)线段树的构建过程与 108.将有序数组转换为二叉搜索树这题类似,具体如下:

  • 定义线段树节点:线段树是一种二叉树,每个节点代表一个区间。每个节点包含了该区间的起始点start、结束点end,以及其他你可能需要的附加信息。
  • 定义递归构建函数:创建一个递归函数来构建线段树。该函数接收输入参数为当前节点、当前区间的起始点和结束点。
  • 基本情况处理:对于当前节点,如果起始点和结束点相等,表示当前节点为叶子节点,直接返回。
  • 划分区间:计算当前区间的中点 mid,将区间分割成两个子区间。通常是将区间一分为二,可以选择将 mid 设置为 (start+end)/2。
  • 递归构建左子树和右子树:调用递归函数,传入左子树和右子树的起始点和中点以构建左右子树。
  • 合并信息:在递归回溯时,将左右子树的信息合并到当前节点。这通常取决于你的问题需求,可以是求和、求最大值、求最小值等。
  • 返回根节点:递归构建完成后,返回根节点。

2.1.聚合操作——求和

(1)实现区间求和操作(包括修改区间的某个元素)的代码实现如下:

class SegmentTree {//线段树数组,segmentTree[i] 表示线段树的第 i 个节点(区间)的聚合值,本代码中是区间和int[] segmentTree;//原始数组int[] nums;public SegmentTree(int[] nums) {this.nums = nums;int n = nums.length;//确定树的高度int height = (int) (Math.ceil(Math.log(n) / Math.log(2))) + 1;//根据树的高度计算需要的线段树数组大小int maxSize = (int) Math.pow(2, height) - 1;//创建线段树数组segmentTree = new int[maxSize];//构建线段树buildTree(0, 0, n - 1);}//构建线段树private int buildTree(int index, int start, int end) {//叶子节点if (start == end) {//叶子节点存储对应的原始数组值segmentTree[index] = nums[start];return segmentTree[index];}int mid = start + (end - start) / 2; // 计算中间位置//分别递归构建左子树和右子树segmentTree[index] = buildTree(2 * index + 1, start, mid) +buildTree(2 * index + 2, mid + 1, end);return segmentTree[index];}//更新原始数组中的某个元素,并同时更新线段树public void update(int i, int val) {//计算变化的差值int diff = val - nums[i];//更新原始数组中的值nums[i] = val;//更新线段树updateTree(0, 0, nums.length - 1, i, diff);}//更新线段树private void updateTree(int index, int start, int end, int i, int diff) {if (i < start || i > end) {//该节点不包含要更新的元素,直接返回return;}//更新当前节点的值segmentTree[index] += diff;if (start != end) {//计算中间位置int mid = start + (end - start) / 2;//递归更新左子树updateTree(2 * index + 1, start, mid, i, diff);//递归更新右子树updateTree(2 * index + 2, mid + 1, end, i, diff);}}//查询线段树中某个区间的和public int querySum(int left, int right) {return queryTree(0, 0, nums.length - 1, left, right);}// 查询线段树private int queryTree(int index, int start, int end, int left, int right) {if (left > end || right < start) {//区间不相交,返回 0return 0;}if (left <= start && right >= end) {//当前节点表示的区间完全被查询区间包含,直接返回当前节点的值return segmentTree[index];}//计算中间位置int mid = start + (end - start) / 2;//分别递归查询左子树和右子树return queryTree(2 * index + 1, start, mid, left, right) +queryTree(2 * index + 2, mid + 1, end, left, right);}
}

(2)测试代码如下:

class SegmentTreeTest {public static void main(String[] args) {//原始数组,可以是有序或者无序的int[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};SegmentTree segmentTree = new SegmentTree(nums);//查询区间 [1, 4] 的和,即 nums[1...4] 的和int sum = segmentTree.querySum(1, 4);System.out.println("Sum of range [1, 4]: " + sum);//将数组下标为 2 的元素更新为 6,即更新 nums[2] = 6,同时更新线段树segmentTree.update(2, 6);//再次查询区间 [1, 4] 的和sum = segmentTree.querySum(1, 4);System.out.println("Updated sum of range [1, 4]: " + sum);}
}

输出结果如下:

Sum of range [1, 4]: 14
Updated sum of range [1, 4]: 17

2.2.聚合操作——求和、求最小值、求最大值

(1)实现区间求和、求最小值、求最大值操作(包括修改区间的某个元素)的代码实现如下:

class SegmentTree {private Node root;//定义节点类,用于表示某个区间private class Node {int start;int end;int sum;int max;int min;Node left;Node right;Node(int start, int end) {this.start = start;this.end = end;this.sum = 0;this.max = Integer.MIN_VALUE;this.min = Integer.MAX_VALUE;}}public SegmentTree(int[] nums) {this.root = build(nums, 0, nums.length - 1);}//构建线段树private Node build(int[] nums, int start, int end) {if (start > end) {return null;}Node node = new Node(start, end);if (start == end) {node.sum = nums[start];node.max = nums[start];node.min = nums[start];} else {int mid = start + (end - start) / 2;node.left = build(nums, start, mid);node.right = build(nums, mid + 1, end);node.sum = node.left.sum + node.right.sum;node.max = Math.max(node.left.max, node.right.max);node.min = Math.min(node.left.min, node.right.min);}return node;}//查询线段树中某个区间的和public int queryRangeSum(int start, int end) {return queryRangeSum(root, start, end);}private int queryRangeSum(Node node, int start, int end) {if (node.start == start && node.end == end) {return node.sum;}int mid = node.start + (node.end - node.start) / 2;if (end <= mid) {return queryRangeSum(node.left, start, end);} else if (start > mid) {return queryRangeSum(node.right, start, end);} else {return queryRangeSum(node.left, start, mid) + queryRangeSum(node.right, mid + 1, end);}}//查询线段树中某个区间的最大值public int queryRangeMax(int start, int end) {return queryRangeMax(root, start, end);}private int queryRangeMax(Node node, int start, int end) {if (node.start == start && node.end == end) {return node.max;}int mid = node.start + (node.end - node.start) / 2;if (end <= mid) {return queryRangeMax(node.left, start, end);} else if (start > mid) {return queryRangeMax(node.right, start, end);} else {return Math.max(queryRangeMax(node.left, start, mid),queryRangeMax(node.right, mid + 1, end));}}//查询线段树中某个区间的最小值public int queryRangeMin(int start, int end) {return queryRangeMin(root, start, end);}private int queryRangeMin(Node node, int start, int end) {if (node.start == start && node.end == end) {return node.min;}int mid = node.start + (node.end - node.start) / 2;if (end <= mid) {return queryRangeMin(node.left, start, end);} else if (start > mid) {return queryRangeMin(node.right, start, end);} else {return Math.min(queryRangeMin(node.left, start, mid),queryRangeMin(node.right, mid + 1, end));}}//更新原始数组中的某个元素,并同时更新线段树public void update(int index, int value) {update(root, index, value);}private void update(Node node, int index, int value) {if (node.start == node.end) {node.sum = value;node.max = value;node.min = value;return;}int mid = node.start + (node.end - node.start) / 2;if (index <= mid) {update(node.left, index, value);} else {update(node.right, index, value);}node.sum = node.left.sum + node.right.sum;node.max = Math.max(node.left.max, node.right.max);node.min = Math.min(node.left.min, node.right.min);}
}

(2)测试代码如下:

class SegmentTreeTest {public static void main(String[] args) {//原始数组,可以是有序或者无序的int[] nums = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};SegmentTree segmentTree = new SegmentTree(nums);//查询区间 [1, 4] 的和,即 nums[1...4] 的和int sum = segmentTree.queryRangeSum(1, 4);System.out.println("Sum of range [1, 4]: " + sum);int max = segmentTree.queryRangeMax(1, 4);System.out.println("Max of range [1, 4]: " + max);int min = segmentTree.queryRangeMin(1, 4);System.out.println("Min of range [1, 4]: " + min);//将数组下标为 1 的元素更新为 0,即更新 nums[1] = 0,同时更新线段树segmentTree.update(1, 0);//将数组下标为 2 的元素更新为 6,即更新 nums[2] = 6,同时更新线段树segmentTree.update(2, 6);//再次查询区间 [1, 4] 的和sum = segmentTree.queryRangeSum(1, 4);System.out.println("Updated sum of range [1, 4]: " + sum);max = segmentTree.queryRangeMax(1, 4);System.out.println("Updated Sum of range [1, 4]: " + max);min = segmentTree.queryRangeMin(1, 4);System.out.println("Updated Min of range [1, 4]: " + min);}
}

输出结果如下:

Sum of range [1, 4]: 14
Max of range [1, 4]: 5
Min of range [1, 4]: 2
Updated sum of range [1, 4]: 15
Updated Sum of range [1, 4]: 6
Updated Min of range [1, 4]: 0

3.应用

(1)LeetCode 中的 307.区域和检索 - 数组可修改这题便是对线段树的具体应用,其题目如下。显然,使用上面的代码可以直接求解。

在这里插入图片描述

(2)大家可以去 LeetCode 上找相关的线段树的题目来练习,或者也可以直接查看 LeetCode 算法刷题目录 (Java) 这篇文章中的线段树章节。如果大家发现文章中的错误之处,可在评论区中指出。

4.与前缀和之间的区别

(1)线段树和前缀和是两种常见的用于解决区间查询问题的数据结构,它们有一些区别:

  • 数据结构
    • 线段树是一种二叉树结构,用于处理区间查询和更新操作。它将区间划分为不相交的子区间,并将每个子区间的信息存储在相应节点中。
    • 前缀和是一个数组,用于存储前缀和值。它通过计算数组元素累加和的方式存储数据。
  • 功能
    • 线段树可以支持多种区间查询操作,例如区间和、区间最大值、区间最小值等。它可以在 O(logN) 的时间复杂度内完成查询和更新操作。
    • 前缀和主要用于计算数组中特定区间的和。它可以在 O(1) 的时间内计算出给定区间的和,但只能处理区间和的查询。
  • 空间复杂度
    • 线段树的空间复杂度为 O(N),其中 N 是数组的大小。它需要存储整个线段树的节点。
    • 前缀和的空间复杂度为 O(N),其中 N 是数组的大小。它只需要存储一个与数组大小相等的前缀和数组。
  • 应用场景
    • 线段树通常用于解决需要频繁进行区间查询和更新操作的问题,比如计算数组的区间和、区间最大值和最小值等。
    • 前缀和通常用于解决需要频繁计算数组特定区间和的问题,比如计算子数组的和、快速判断数组中是否存在某个区间的和等。

(2)综上所述,线段树和前缀和在功能和应用场景上略有不同,选择使用哪种数据结构取决于具体的问题需求和效率要求。

有关前缀和的相关知识可以参考【数据结构】前缀和数组这篇文章。

http://www.15wanjia.com/news/3179.html

相关文章:

  • 广州住房公积金建设银行预约网站首页网络营销常见术语
  • 做网站的公司怎么做业务google seo优化
  • 浙江网页设计seo网站整站优化
  • 惠东网站建设有没有自动排名的软件
  • 外贸整合营销网站app拉新推广代理平台
  • 哪个网站可以做设计赚钱seo包年优化费用
  • 网站的真实域名谷歌seo博客
  • 建材公司网站建设案例百度打车客服电话
  • 自己做网站写网页一般用gbk还是gb2312还是utf8seo人员工作内容
  • 查询企业年报的网站专业推广引流团队
  • 没有网站如何做营销韩国今日特大新闻
  • 公司手机版网站制作地推团队去哪里找
  • 爱旅游网站制作磁力猫最好磁力搜索引擎
  • 在线转格式网站怎么做专业培训seo的机构
  • 网页设计尺寸规范ps专业关键词排名优化软件
  • 和平网站制作兰州seo推广
  • 郑州网站建设 天强科技杭州排名推广
  • 网站开发保密协议平台外宣推广技巧
  • 做复刻衣服买网站中国网站排名查询
  • 微商的自己做网站叫什么软件阿里云域名查询
  • c 网站开发网易云课堂百度云下载百度助手手机下载
  • 社交网站设计腾讯搜索引擎入口
  • 专门做尿不湿的网站个人网页制作成品
  • 微信做网站seo和sem的关系
  • 校园网网站建设实训报告seo运营工作内容
  • 韶关做网站的公司网站域名注册查询
  • 免费网站模板建站网站搜索优化找哪家
  • 孙俪做的网站广告西地那非片能延时多久有副作用吗
  • 营销型网站建设要懂代码吗seo推广方式是什么呢
  • 长沙最新死亡事件宁波seo哪家好快速推广