当前位置: 首页 > news >正文

移动app与网站建设的区别体验营销策略有哪些

移动app与网站建设的区别,体验营销策略有哪些,做网站好多钱,专门做离异相亲的网站多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测 目录多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果 基本介绍 MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测,CNN-BiLSTM-Atte…

多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测

目录

    • 多维时序 | MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1
2
3
4
5
6
7
8
9
10
11

基本介绍

MATLAB实现CNN-BiLSTM-Attention多变量时间序列预测,CNN-BiLSTM-Attention结合注意力机制多变量时间序列预测。

模型描述

Matlab实现CNN-BiLSTM-Attention多变量时间序列预测
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.CNN_BiLSTM_AttentionNTS.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。

注意程序和数据放在一个文件夹,运行环境为Matlab2020b及以上。
4.注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主获取。
layers = [% input matrix of spectrogram valuessequenceInputLayer(inputSize,"Name","sequence")sequenceFoldingLayer("Name","fold");% convolutional layersconvolution2dLayer([5 5],10,"Name","conv1","Stride",[2 1])reluLayer("Name","relu1")maxPooling2dLayer([5 5],"Name","maxpool1","Padding","same","Stride",[2 1])convolution2dLayer([5 5],10,"Name","conv2","Stride",[2 1])reluLayer("Name","relu2")maxPooling2dLayer([5 5],"Name","maxpool2","Padding","same","Stride",[2 1])convolution2dLayer([3 3],1,"Name","conv3","Padding",[1 1 1 1])reluLayer("Name","relu3")maxPooling2dLayer([2 2],"Name","maxpool3","Padding","same","Stride",[2 1]);% unfold and feed into LSTMsequenceUnfoldingLayer("Name","unfold")flattenLayer("Name","flatten")bilstmLayer(numHiddenUnits1,"Name","bilstm","OutputMode","last")dropoutLayer(0.4,"Name","dropout")fullyConnectedLayer(numClasses,"Name","fc")softmaxLayer("Name","softmax")classificationLayer("Name","classoutput");];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');
% Training
maxEpochs = 200;
learningRate = 0.001;
miniBatchSize = 15; % is this needed?
options = trainingOptions('sgdm', ...'ExecutionEnvironment', 'gpu', ...'GradientThreshold', 1, ...    'MaxEpochs' ,maxEpochs, ...'miniBatchSize',miniBatchSize,...'SequenceLength', 'longest', ...'Verbose', 0, ...'ValidationData', {xVal, yVal}, ...'ValidationFrequency', 30, ...'InitialLearnRate', learningRate, ...'Plots', 'training-progress',...'Shuffle', 'every-epoch');
net = trainNetwork(xTrain, yTrain, lgraph, options);
layers = [ sequenceInputLayer(12,'Normalization','none', 'MinLength', 9);convolution1dLayer(3, 16)batchNormalizationLayer()reluLayer()maxPooling1dLayer(2)convolution1dLayer(5, 32)batchNormalizationLayer()reluLayer() averagePooling1dLayer(2)lstmLayer(100, 'OutputMode', 'last')fullyConnectedLayer(9)softmaxLayer()classificationLayer()];
options = trainingOptions('adam', ...'MaxEpochs',10, ...'MiniBatchSize',27, ...'SequenceLength','longest');
% Train network
net = trainNetwork(XTrain,YTrain,layers,options);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

http://www.15wanjia.com/news/27506.html

相关文章:

  • 建设个网站需要多少钱软文推广的100个范例
  • 网站底部悬浮广告代码自己怎么开发app软件
  • 写作网站官方seo顾问服务
  • 网站策划书1000字关键词优化seo优化
  • 网站设计公司武汉安卓优化大师历史版本
  • 专业医疗网站建设百度公司招聘信息
  • 无锡锡山网站建设百度怎么做推广
  • 百度联盟广告点击一次收益seo怎么收费的
  • 电话号码宣传广告seo点击排名器
  • 数据库怎么做网站seo流量优化
  • 唐老鸭微信营销软件seo网络营销技术
  • 网站建设工作讲话百度指数功能模块
  • 网站用的服务器多少钱市场推广方法
  • 做网站用什么软件知乎百度站长管理平台
  • 什么是理财北京网站建设公司香港域名注册网站
  • 做网站毕业答辩问题seo项目经理
  • 唐山做网站优化公司个人网站制作模板
  • 泰兴网站优化百度网址大全设为主页
  • 韶关微网站建设百度ai智能写作工具
  • php mysql网站开发试题a网上永久视频会员是真的吗
  • 网站建设和优化新闻式软文经典案例
  • 芜湖哪里有做网站的学生个人网页制作代码
  • 泰国浪琴手表网站百度知道首页登录
  • taobaocom淘宝网页版seo推广网络
  • 网站建设小组的运营模式韩国vs加纳分析比分
  • 小程序直播开发自动优化句子的软件
  • 企业网站建设的原则包括网站关键词优化排名软件系统
  • 做网站需要学习什么搜索引擎调词平台价格
  • 前端外包网站印度疫情最新消息
  • 零基础做网站如何创建网站