当前位置: 首页 > news >正文

wordpress后台满权威seo技术

wordpress后台满,权威seo技术,云开发技术,做网站费用分摊入什么科目本题中&#xff0c;在不含截距的简单线性回归中&#xff0c;用零假设对统计量进行假设检验。首先&#xff0c;我们使用下面方法生成预测变量x和响应变量y。 set.seed(1) x <- rnorm(100) y <- 2*xrnorm(100) &#xff08;a&#xff09;不含截距的线性回归模型构建。 &…

        本题中,在不含截距的简单线性回归中,用零假设H_{0}:\beta=0t统计量进行假设检验。首先,我们使用下面方法生成预测变量x和响应变量y。

set.seed(1)
x <- rnorm(100)
y <- 2*x+rnorm(100)

(a)不含截距的线性回归模型y=\beta x+\epsilon构建。

(1)建立y关于x的不含截距项的简单线性回归。估计系数\hat{\beta}及其标准差、t 统计量和与零假设相关的p值。分析这些结果。

        这里我们使用下面代码实现没有截距的简单线性回归。

lm(y~x+0)

        代码如下:

set.seed(1)
x = rnorm(100)
y = 2*x + rnorm(100)lm.fit = lm(y~x+0)
summary(lm.fit)

        输出结果:

Call:
lm(formula = y ~ x + 0)Residuals:Min      1Q  Median      3Q     Max 
-1.9154 -0.6472 -0.1771  0.5056  2.3109 Coefficients:Estimate Std. Error t value Pr(>|t|)    
x   1.9939     0.1065   18.73   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9586 on 99 degrees of freedom
Multiple R-squared:  0.7798,	Adjusted R-squared:  0.7776 
F-statistic: 350.7 on 1 and 99 DF,  p-value: < 2.2e-16

        由输出结果得出:

        简单线性回归方程:                          

\hat{y}=1.9939x

其中:

\hat{\beta}=1.9939

SE=0.1065

t\,value=18.73

其中:t 统计量的 p 值接近于零,因此拒绝原假设。

(b)参数估计。

(2)建立x关于y的不含截距项的简单线性回归。估计系数\hat{\beta}及其标准差、t 统计量和与零假设相关的p值。分析这些结果。

lm.fit = lm(x~y+0)
summary(lm.fit)

        输出结果:

Call:
lm(formula = x ~ y + 0)Residuals:Min      1Q  Median      3Q     Max 
-0.8699 -0.2368  0.1030  0.2858  0.8938 Coefficients:Estimate Std. Error t value Pr(>|t|)    
y  0.39111    0.02089   18.73   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.4246 on 99 degrees of freedom
Multiple R-squared:  0.7798,	Adjusted R-squared:  0.7776 
F-statistic: 350.7 on 1 and 99 DF,  p-value: < 2.2e-16

        由输出结果得出:

        简单线性回归方程:                       

   \hat{x}=0.3911y

其中:

\hat{\beta}=0.3911

SE=0.0209

t\,value=18.73

其中: t 统计量的 p 值接近于零,因此拒绝原假设。

(c)模型结果分析。

(3)(1)和(2)所得到的结果有什么关系?

        (1)和(2)的结果反映了同一个线性关系模型,y = 2x + \epsilon 和 x = 0.5 * (y - \epsilon)在一定程度上是等价的线性关系模型,他们的 t 值都等于 18.73。

(d)t 统计量检验证明。 

(4)对于y对x的不含截距的简单线性回归,零假设:H_{0}:\beta=0 的 t 统计量具有\frac{\hat{\beta}}{SE(\hat{\beta})}的形式,其中\hat{\beta}由下式给出,其中:

SE(\hat{\beta}) = \sqrt{\frac {\sum{(y_i - x_i \hat{\beta})^2}} {(n-1) \sum{x_i^2}}}

用代数的方法证明上面式子可以写成如下形式,并在R中进行确认。

        证明:

\begin{array}{cc} t = \hat{\beta} / SE(\hat{\beta}) \\ \\ \hat{\beta} = \frac {\sum{x_i y_i}} {\sum{x_i^2}} \\ \\ SE(\hat{\beta}) = \sqrt{\frac {\sum{(y_i - x_i \hat{\beta})^2}} {(n-1) \sum{x_i^2}}} \\ \\ t = {\frac {\sum{x_i y_i}} {\sum{x_i^2}}} {\sqrt{\frac {(n-1) \sum{x_i^2}} {\sum{(y_i - x_i \hat{\beta})^2}}}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{(y_i - x_i \hat{\beta})^2}}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{(y_i^2 - 2 \hat{\beta} x_i y_i + x_i^2 \hat{\beta}^2)}}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - \sum{x_i^2} \hat{\beta} (2 \sum{x_i y_i} - \hat{\beta} \sum{x_i^2})}} \\ \\ = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - \sum{x_i y_i} (2 \sum{x_i y_i} - \sum{x_i y_i})}} \\ \\ t = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - (\sum{x_i y_i})^2 }} \end{array}

         R语言验证:

sqrt(length(x)-1) * sum(x*y)) / (sqrt(sum(x*x) * sum(y*y) - (sum(x*y))^2)
[1] 18.72593

         由输出结果得出:这与上面显示的 t 统计量相同。

(e)简单线性回归中y对x回归与x对y回归的 t 统计量相等。

(f1)无截距情况证明: 

(5)用(4)的结果证明y对x回归与x对y回归的 t 统计量相等。

        如果你把 t(x,y) 换成 t(y,x),那么你会发现 t(x,y) = t(y,x)。

t(x,y) = \frac {\sqrt{n-1} \sum{x_i y_i}} {\sqrt{\sum{x_i^2} \sum{y_i^2} - (\sum{x_i y_i})^2 }}=t(y,x)

(f2)有截距情况y=\beta_{1} x+\beta_{0}+ \epsilon证明: 

 (6)在R中证明在截距的回归中,零假设:H_{0}:\beta_{1}=0 的 t 统计量在y对x的回归中和x对y的回归中是一样的。

        代码如下:

lm.fit = lm(y~x)
lm.fit2 = lm(x~y)
summary(lm.fit)

         输出:

Call:
lm(formula = y ~ x)Residuals:Min      1Q  Median      3Q     Max 
-1.8768 -0.6138 -0.1395  0.5394  2.3462 Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.03769    0.09699  -0.389    0.698    
x            1.99894    0.10773  18.556   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.9628 on 98 degrees of freedom
Multiple R-squared:  0.7784,	Adjusted R-squared:  0.7762 
F-statistic: 344.3 on 1 and 98 DF,  p-value: < 2.2e-16
summary(lm.fit2)

        输出:

Call:
lm(formula = x ~ y)Residuals:Min       1Q   Median       3Q      Max 
-0.90848 -0.28101  0.06274  0.24570  0.85736 Coefficients:Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.03880    0.04266    0.91    0.365    
y            0.38942    0.02099   18.56   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.4249 on 98 degrees of freedom
Multiple R-squared:  0.7784,	Adjusted R-squared:  0.7762 
F-statistic: 344.3 on 1 and 98 DF,  p-value: < 2.2e-16

        由表格结果,零假设:H_{0}:\beta_{1}=0 的 t 统计量在y对x的回归中为18.556,在x对y的回归中为18.56,说明在截距的回归中,零假设:H_{0}:\beta_{1}=0 的 t 统计量在y对x的回归中和x对y的回归中是一样的。

http://www.15wanjia.com/news/27170.html

相关文章:

  • 做网站云服务器装系统百度广告联盟收益
  • 公司网站设计怎么做上海知名的seo推广咨询
  • 电商网站建设开发的语言有哪些小学四年级摘抄新闻
  • 餐馆网站怎么做如何做网站营销推广
  • 营销网站开发选哪家快速提高关键词排名的软件
  • 微信小程序制作成本百度seo综合查询
  • 成功的网站不仅仅是优化排郑州百度推广开户
  • 音乐类网站页面设计特点企业网站有哪些类型
  • 淘宝客怎么做的网站推广网站友链查询接口
  • 电子商务网站建设的核心多选网站页面禁止访问
  • 移动互联网时代的到来为很多企业提供了新的商业机会广州网站优化排名系统
  • 学做烤制食品的网站最佳磁力搜索引擎
  • 网站开发工具以及优缺点快手流量推广网站
  • 网站建设 博客长春疫情最新消息
  • 自己电脑上做网站怎么使用源码创建网站花钱吗
  • 上海网站自然排名优化价格手游代理加盟哪个平台最强大
  • 唐山网站建设报价如何找外链资源
  • 建个网站的电话bt鹦鹉磁力
  • 淘宝客做网站怎么赚钱哪家公司建设网站好
  • 免费系统小说大全北京网站优化企业
  • app网站开发河 又会计培训班一般多少钱
  • 做网站用php最新的网络营销方式
  • 网站制作与网站建设dsp投放方式
  • 广告设计与制作培训学校seo百度首页排名业务
  • 天河建设网站哪个好广告联盟赚钱app
  • 内蒙古建设厅门户网站上海疫情突然消失的原因
  • 线上 网站建设 商务信息百度趋势搜索大数据
  • 定制网站建设服务搜索引擎优化文献
  • 中国人民银行官方网站信息流广告投放平台
  • 国外网站怎么做网络推广的方式和途径有哪些