当前位置: 首页 > news >正文

伊宁市做网站外国网站的浏览器

伊宁市做网站,外国网站的浏览器,西安做网站建设的公司,济南网络营销外包服务优质博文:IT-BLOG-CN 一、题目 给定一个整数数组nums,将数组中的元素向右轮转k个位置,其中k是非负数。 示例 1: 输入: nums [1,2,3,4,5,6,7], k 3 输出: [5,6,7,1,2,3,4] 解释: 向右轮转 1 步: [7,1,2,3,4,5,6] 向右轮转 2 步: [6,7,1,2,…

优质博文:IT-BLOG-CN

一、题目

给定一个整数数组nums,将数组中的元素向右轮转k个位置,其中k是非负数。

示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]

1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105

进阶: 尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。你可以使用空间复杂度为O(1)的原地算法解决这个问题。

二、代码

【1】使用额外的数组: 我们可以使用额外的数组来将每个元素放至正确的位置。我们遍历原数组,将原数组下标为i的元素放至新数组下标为(i+k) mod nums.length的位置,最后将新数组拷贝至原数组即可。

class Solution {public void rotate(int[] nums, int k) {// 使用一个等长的数组int[] newArray = new int[nums.length];for (int i = 0; i < nums.length; i++) {newArray[(i + k) % nums.length] = nums[i];}System.arraycopy(newArray, 0, nums, 0, nums.length);}
}

时间复杂度: O(n)其中n为数组的长度。
空间复杂度: O(n)

【2】数组翻转: 该方法基于如下的事实:当我们将数组的元素向右移动k次后,尾部k mod n个元素会移动至数组头部,其余元素向后移动k mod n个位置。

该方法为数组的翻转: 我们可以先将所有元素翻转,这样尾部的k mod n个元素就被移至数组头部,然后我们再翻转[0,k mod n−1]区间的元素和[k mod n,n−1]区间的元素即能得到最后的答案。

我们以n=7k=3为例进行如下展示:

操作结果
原始数组1 2 3 4 5 6 7
翻转所有元素7 6 5 4 3 2 1
翻转[0,k mod n−1]区间的元素5 6 7 4 3 2 1
翻转 [k mod n,n−1]区间的元素5 6 7 1 2 3 4
class Solution {public void rotate(int[] nums, int k) {// 放置下表越界k %= nums.length;// 数组反转reverse(nums, 0 , nums.length - 1);reverse(nums, 0, k - 1);reverse(nums, k, nums.length - 1);}private void reverse(int[] nums, int start, int end) {while(start < end) {int temp = nums[start];nums[start] = nums[end];nums[end] = temp;++start;--end;}}
}

【3】环状替换: 方法一中使用额外数组的原因在于如果我们直接将每个数字放至它最后的位置,这样被放置位置的元素会被覆盖从而丢失。因此,从另一个角度,我们可以将被替换的元素保存在变量temp中,从而避免了额外数组的开销。

我们从位置0开始,最初令temp=nums[0]。根据规则,位置0的元素会放至(0+k) mod n的位置,令x=(0+k) mod n,此时交换tempnums[x],完成位置x的更新。然后,我们考察位置x,并交换tempnums[(x+k) mod n],从而完成下一个位置的更新。不断进行上述过程,直至回到初始位置0

容易发现,当回到初始位置0时,有些数字可能还没有遍历到,此时我们应该从下一个数字开始重复的过程,可是这个时候怎么才算遍历结束呢?我们不妨先考虑这样一个问题:从0开始不断遍历,最终回到起点0的过程中,我们遍历了多少个元素?由于最终回到了起点,故该过程恰好走了整数数量的圈,不妨设为a圈;再设该过程总共遍历了b个元素。因此,我们有an=bk,即an一定为n,k的公倍数。又因为我们在第一次回到起点时就结束,因此a要尽可能小,故an就是n,k的最小公倍数lcm(n,k),因此b就为lcm(n,k)/k

这说明单次遍历会访问到lcm(n,k)/k个元素。为了访问到所有的元素,我们需要进行遍历的次数为n/(lcm(n,k)/k)=nk/(lcm(n,k))=gcd(n,k)

其中gcd指的是最大公约数。

我们用下面的例子更具体地说明这个过程:

nums = [1, 2, 3, 4, 5, 6]
k = 2

如果读者对上面的数学推导的理解有一定困难,也可以使用另外一种方式完成代码:使用单独的变量count跟踪当前已经访问的元素数量,当count=n时,结束遍历过程。

class Solution {public void rotate(int[] nums, int k) {int n = nums.length;k = k % n;int count = gcd(k, n);for (int start = 0; start < count; ++start) {int current = start;int prev = nums[start];do {int next = (current + k) % n;int temp = nums[next];nums[next] = prev;prev = temp;current = next;} while (start != current);}}public int gcd(int x, int y) {return y > 0 ? gcd(y, x % y) : x;}
}

时间复杂度: O(n)其中n为数组的长度。每个元素只会被遍历一次。
空间复杂度: O(1)我们只需常数空间存放若干变量。

http://www.15wanjia.com/news/27002.html

相关文章:

  • 从江网站建设深圳防疫措施优化
  • 东莞虚拟主机seo基础知识包括什么
  • 建设校园网站没有限制的国外搜索引擎
  • 网站开发技术服务费微信群推广平台有哪些
  • 如何分析一个网站做的怎么样电商网站建设报价
  • 网站源代码分列怎么做移动端关键词排名优化
  • 贵州易广建设集团网站石家庄网站优化
  • 2016个人做淘宝客网站域名交易平台
  • 网站网站制作怎么样日本shopify独立站
  • 公司网站是否做地方分站今日头条最新版
  • 基础网站建设代码域名交易中心
  • 分包合同建设局网站下载广州seo公司推荐
  • 品牌做网站网站seo设计
  • 网站建设专题的意义宁波网络营销推广公司
  • 做网站要钱么今日热点新闻素材
  • 网站的留言怎么做品牌推广外包
  • 手机网站在线制作苏州吴中区seo关键词优化排名
  • 网站备案 工信部成功营销案例分享
  • 网站搭建服务电子商务是干什么的
  • 广州做创客教室的厂家网站免费营销软件网站
  • 顺德佛山做app网站百度推广seo怎么学
  • 国内专业做悬赏的网站培训网站推荐
  • 洛阳网站建设公司近期国内热点新闻事件
  • 东莞中央空调东莞网站建设seo是什么意思
  • 安徽网站排名网站优化排名易下拉排名
  • 在线购物网站开发线上营销推广公司
  • 石家庄网站建设培训班免费推广产品的网站
  • 建设公司网站广告语下载百度安装到桌面
  • led灯外贸网站建设南宁网站建设服务公司
  • 怎么帮公司做网站建设北京网站优化排名推广