当前位置: 首页 > news >正文

用单页做网站 文章直接写上去 百度收录关键词吗安徽网络建站

用单页做网站 文章直接写上去 百度收录关键词吗,安徽网络建站,kesion系统做网站教程,查询网站最新域名大致的流程:需求对接、口径梳理、数据开发、任务发布、任务监控、任务保障 流程图 startuml skinparam packageStyle rectangleactor 需求方 participant 数据BP as 数据组 participant 离线数仓 participant 实时数仓需求方 -> 数据组: 提出需求 数据组 -> …

大致的流程:需求对接、口径梳理、数据开发、任务发布、任务监控、任务保障

大数据需求种类.png

流程图

@startuml
skinparam packageStyle rectangleactor 需求方
participant 数据BP as 数据组
participant 离线数仓
participant 实时数仓需求方 -> 数据组: 提出需求
数据组 -> 数据组: 分析需求
数据组 -> 离线数仓: 确认指标\n口径&数据源确认
离线数仓 -> 实时数仓: 数据探查
实时数仓 -> 离线数仓: 接入数据开发验证
离线数仓 -> 实时数仓: 数据验收
实时数仓 -> 离线数仓: 数据上线note right: 发起口径变更
离线数仓 -> 实时数仓: 判断是否涉及实时
alt 是
实时数仓 -> 离线数仓: 拉齐离线实时口径
end
alt 否
离线数仓 -> 离线数仓: 口径变更
end离线数仓 -> 离线数仓: 离线变更
离线数仓 -> 实时数仓: 实时变更
实时数仓 -> 实时数仓: 数据验收
实时数仓 -> 实时数仓: 数据上线
@enduml

渲染过之后,长这样子了

数据需求-2024-06-08-14-35-57.png

大数据开发是一个复杂而系统性的过程,涉及多个环节和角色。以下是各个环节的详细介绍:

1. 需求对接

需求对接是大数据开发的起点,主要包括以下几个步骤:

  • 需求收集:与业务部门或客户沟通,明确他们的数据需求。例如,需要哪些数据、数据的来源、数据处理后的输出形式、数据的更新频率等。
  • 需求分析:分析需求的可行性,评估技术实现的难度,估算所需的时间和资源。
  • 需求确认:与业务部门或客户确认需求细节,确保双方对需求有一致的理解。
示例1:零售行业的需求对接
  • 需求收集
    • 业务背景:某零售连锁店希望分析会员消费数据,以便进行精准营销。
    • 沟通内容
      • 数据需求:会员的购买历史、优惠券使用记录、反馈评论等。
      • 数据来源:POS系统、会员管理系统、在线购物平台。
      • 输出形式:个性化营销方案、促销活动推荐。
      • 更新频率:每周更新一次。
  • 需求分析
    • 可行性分析:数据获取和处理的复杂性,数据量的大小,对数据实时性的要求。
    • 资源估算:预计需要1个月时间,涉及1名数据工程师、1名数据分析师。
  • 需求确认
    • 细节确认:与营销部门详细讨论和确认每个数据字段和分析指标,确定数据的处理流程和输出方式。
    • 确认文档:编写需求文档并获得相关部门签字确认。
      大数据需求.png

2. 口径梳理

口径梳理是指对数据指标、维度等进行定义和规范化,以确保数据的一致性和准确性。具体步骤包括:

  • 定义数据口径:明确数据指标的计算方法、维度的划分方式、数据的来源等。
  • 口径文档:编写详细的口径文档,记录数据口径的定义和规则,以便后续开发和维护。
  • 沟通确认:与相关部门沟通口径定义,确保所有人对口径的理解一致。

3. 数据开发

数据开发是整个过程的核心环节,涉及数据的获取、处理和存储。具体步骤包括:

  • 数据采集:从各种数据源(如数据库、日志文件、API等)获取原始数据。
  • 数据清洗:对原始数据进行清洗,处理缺失值、重复数据、异常值等问题。
  • 数据转换:根据需求对数据进行转换和加工,如聚合、分组、计算等。
  • 数据存储:将处理后的数据存储到数据仓库或数据库中,以便后续使用。

4. 任务发布

任务发布是指将开发完成的数据处理任务部署到生产环境中,通常包括以下步骤:

  • 测试:在测试环境中对数据处理任务进行测试,确保其能正确运行。
  • 部署:将经过测试的数据处理任务部署到生产环境中。
  • 发布:正式发布数据处理任务,并通知相关部门或客户。

5. 任务监控

任务监控是保证数据处理任务正常运行的重要环节,具体包括:

  • 实时监控:通过监控系统实时监控任务的运行状态,及时发现和处理异常。
  • 日志分析:通过分析任务的运行日志,了解任务的执行情况,发现潜在问题。
  • 告警机制:设置告警机制,当任务运行出现异常时,及时通知相关人员处理。

6. 任务保障

任务保障是确保数据处理任务稳定运行的一系列措施,包括:

  • 备份和恢复:定期备份数据和任务配置,确保在发生故障时能快速恢复。
  • 容错机制:设计任务的容错机制,如任务失败时自动重试、任务失败时的应急预案等。
  • 性能优化:对数据处理任务进行性能优化,提高任务的执行效率,减少资源消耗。
  • 定期巡检:定期对数据处理任务进行巡检,发现并解决潜在问题,确保任务的长期稳定运行。

以上是大数据开发各个环节的详细介绍,每个环节都至关重要,只有各个环节紧密配合,才能确保大数据开发工作的顺利进行和最终数据产品的高质量交付

需求流程.png

http://www.15wanjia.com/news/25082.html

相关文章:

  • 怎么建设外贸网站网络安全
  • 大学 两学一做专题网站seo企业优化方案
  • 浏览器怎么做能不拦截网站怎样推广一个产品
  • 怎么判断网站开发语言百度高级检索入口
  • 编写程序的步骤西安优化外包
  • 怎么做租号网站独立站seo优化
  • 制作网页游戏过程seo点击软件排名优化
  • 品牌建设和市场营销的区别百度 seo优化作用
  • 艺术设计招聘网站小程序开发哪家好
  • 界面做的比较好的网站杭州seo公司服务
  • 建设与管理委员会网站高端网站建设的公司
  • wordpress网址跳转安徽seo网络优化师
  • mac wordpress本地安装插件网站推广和优化的原因
  • 上国外网站的host江北关键词优化排名seo
  • 回收手表的网站深圳百度快照优化
  • 搜索网址网站建站查图百度识图
  • 做网站后期维护wix网站制作
  • 学校网页网站模板百度竞价排名背后的伦理问题
  • wordpress视频插件a vi深圳抖音seo
  • 网站建设套模板seo站长综合查询工具
  • 建网站的好处网站优化排名易下拉排名
  • 展示型网站建设流程google学术搜索
  • 镇江本地网站百度识图搜索
  • 合肥模板网站建设软件怎么制作网页广告
  • hexo框架做网站温州seo优化公司
  • 体育用品东莞网站建设软文交易平台
  • react怎么做pc网站重庆seo小z博客
  • 企业网站建设 知乎汕头网站推广排名
  • 学做网站论坛vip今天宣布疫情最新消息
  • 人大网站建设情况热点新闻