当前位置: 首页 > news >正文

做网站申请完域名后做什么网页搜索快捷键是什么

做网站申请完域名后做什么,网页搜索快捷键是什么,做网站在哪里,平台是什么意思有哪些文章目录 环境配置(必看)头文件引用1.朴素贝叶斯算法代码运行结果优缺点 2.决策树代码运行结果决策树可视化图片优缺点 3.随机森林代码RandomForestClassifier()运行结果总结 本章学习资源 环境配置(必看) Anaconda-创建虚拟环境…

文章目录

  • 环境配置(必看)
  • 头文件引用
    • 1.朴素贝叶斯算法
      • 代码
      • 运行结果
      • 优缺点
    • 2.决策树
      • 代码
      • 运行结果
      • 决策树可视化图片
      • 优缺点
    • 3.随机森林
      • 代码
      • RandomForestClassifier()
      • 运行结果
      • 总结
  • 本章学习资源

环境配置(必看)

Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。

头文件引用

from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
import pandas as pd

1.朴素贝叶斯算法

查看存放数据集的路径(手动下载数据集存放在这个路径下)

print(sklearn.datasets.get_data_home())

参考这篇文章进行的数据集的适配–
sklearn的英文20新闻数据集fetch_20newsgroups在MAC电脑上的加载
我的电脑是win10,最终修改的路径为:

archive_path = 'C:/Users/asus/scikit_learn_data/20news_home/20news-bydate.tar.gz'

代码

调参:
MultinomialNB()默认的alpha=1,但是准确率只有84%,设置为alpha=0.01,准确率有很大提高

def nb_news():"""用朴素贝叶斯算法对新闻进行分类:return:"""# 1)获取数据# subset参数 默认是获取训练集,如果训练集和目标集都要就是subset='all'news = fetch_20newsgroups(subset='all')# 2)划分数据集 random_state=10x_train, x_test, y_train, y_test = train_test_split(news.data, news.target)# 3)特征工程:文本特征抽取transfer = TfidfVectorizer()# 抽取训练集和测试集的特征值x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4)朴素贝叶斯算法算法预估器流程estimator = MultinomialNB(alpha=0.01)estimator.fit(x_train, y_train)# 5.模型评估# 方法1: 直接比对真实值和预测值y_predict = estimator.predict(x_test)print(f"y_predict:\n{y_predict}")print(f"直接比对真实值和预测值: {y_test == y_predict}")# 方法2: 计算准确率score = estimator.score(x_test, y_test)print(f"准确率为: {score}")

运行结果

在这里插入图片描述

优缺点

优点:对缺失数据不太敏感,算法也比较简单,常用于文本分类。分类准确度高,速度快
缺点:由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好

2.决策树

代码

def decision_iris():"""用决策树对鸢尾花进行分类:return:"""# 1.获取数据集iris = load_iris()# 2.划分数据集x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)# 3.决策树预估器estimator = DecisionTreeClassifier()estimator.fit(x_train, y_train)# 4.模型评估# 方法1: 直接比对真实值和预测值y_predict = estimator.predict(x_test)print(f"y_predict:\n{y_predict}")print(f"直接比对真实值和预测值: {y_test == y_predict}")# 方法2: 计算准确率score = estimator.score(x_test, y_test)print(f"准确率为: {score}")# 可视化决策树 feature_names=iris.feature_names 传输特征名字显示在结构图中plot_tree(estimator, feature_names=iris.feature_names)# 保存决策树可视化结构图片plt.savefig("tree_struct.png")# 显示图像plt.show()

运行结果

在这里插入图片描述

决策树可视化图片

petal_width(cm): 花瓣宽度
entropy: 信息增益
samples:样本 (第一个框:150*0.75≈112)
value:每个类别中有多少个符合条件的元素
在这里插入图片描述

优缺点

优点:简单的理解和解释,树木可视化。
缺点:决策树学习者可以创建不能很好地推广数据的过于复杂的树,容易发生过拟合。
改进:减枝cart算法随机森林(集成学习的一种)
注:企业重要决策,由于决策树很好的分析能力,在决策过程应用较多, 可以选择特征

3.随机森林

代码

def random_forest():"""随机森林对泰坦尼克号乘客的生存进行预测:return:"""# 1.获取数据集titanic = pd.read_csv("titanic.csv")# 筛选特征值和目标值x = titanic[["pclass", "age", "sex"]]y = titanic["survived"]# 2.数据处理# 1) 缺失值处理x["age"].fillna(x["age"].mean(), inplace=True)# 2) 转换成字典x = x.to_dict(orient="records")# 3.划分数据集 random_state=10x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)# 4.字典特征抽取transfer = DictVectorizer()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 5.算法预估器estimator = RandomForestClassifier()# 加入网格搜索和交叉验证# 参数准备  "max_depth" 最大深度param_dict = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}  # 网格搜索# cv=10 代表10折运算(交叉验证)estimator = GridSearchCV(estimator, param_grid=param_dict, cv=3)estimator.fit(x_train, y_train)# 6.模型评估# 方法1: 直接比对真实值和预测值y_predict = estimator.predict(x_test)print(f"y_predict:\n{y_predict}")print(f"直接比对真实值和预测值: {y_test == y_predict}")# 方法2: 计算准确率score = estimator.score(x_test, y_test)print(f"准确率为: {score}")# 最佳参数:print("最佳参数: \n", estimator.best_params_)# 最佳结果:print("最佳结果: \n", estimator.best_score_)# 最佳参数:print("最佳估计器: \n", estimator.best_estimator_)# 交叉验证结果:print("交叉验证结果: \n", estimator.cv_results_)

RandomForestClassifier()

在这里插入图片描述

运行结果

在这里插入图片描述
在这里插入图片描述

总结

能够有效地运行在大数据集上,
处理具有高维特征的输入样本,而且不需要降维   

本章学习资源

黑马程序员3天快速入门python机器学习我是跟着视频进行的学习,欢迎大家一起来学习!

http://www.15wanjia.com/news/22935.html

相关文章:

  • 传奇私服打广告网站咋做统计白云区新闻
  • 企业网络推广分析论文电脑上突然出现windows优化大师
  • 石家庄网站推广公司南宁网站建设公司排行
  • 有哪些是做二手的网站自己建网页
  • 网站建设 软件有哪些百度广告投放收费标准
  • 电子商务网站建设不足培训学校加盟
  • 电脑做ppt如何插入网站广告推广费用一般多少
  • 自己可以做开奖网站吗新余seo
  • 高端网站建设wanghessseo排名点击手机
  • 高端品牌裙子实时seo排名点击软件
  • 河南专业网站建设公司推荐现在阳性最新情况
  • 重庆网购平台湖南专业seo推广
  • 邯郸哪里制作网站百度指数什么意思
  • h5可以做网站吗谷歌seo技巧
  • wordpress 仿站做神马seo快速排名软件
  • 什么是网络社交安全邢台市seo服务
  • wordpress diyzhan外贸谷歌优化
  • 做外贸哪个网站最容易上手市场营销计划书模板
  • 嘉兴网站建设公司产品宣传方案
  • 平台网站开发的税率2022年度最火关键词
  • 个人flash网站怎么引流推广
  • 广州企业网站建设靠谱今日国际新闻最新消息十条
  • 最优秀的无锡网站建设东莞百度推广优化
  • 做直播网站找哪个怎么做百度推广的代理
  • 上饶市做网站外贸网站建设案例
  • 做搜索关键词任务网站网站收录免费咨询
  • 互联网做网站怎么赚钱cps广告联盟网站
  • 简述网站建设的一般步骤免费发布活动的平台
  • 北京代理网站备案电脑培训学校学费多少
  • java做的网站放哪里seo整站优化技术培训